Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé
Module « numpy.matlib »

Fonction argmin - module numpy.matlib

Signature de la fonction argmin

def argmin(a, axis=None, out=None, *, keepdims=<no value>) 

Description

help(numpy.matlib.argmin)

Returns the indices of the minimum values along an axis.

Parameters
----------
a : array_like
    Input array.
axis : int, optional
    By default, the index is into the flattened array, otherwise
    along the specified axis.
out : array, optional
    If provided, the result will be inserted into this array. It should
    be of the appropriate shape and dtype.
keepdims : bool, optional
    If this is set to True, the axes which are reduced are left
    in the result as dimensions with size one. With this option,
    the result will broadcast correctly against the array.

    .. versionadded:: 1.22.0

Returns
-------
index_array : ndarray of ints
    Array of indices into the array. It has the same shape as `a.shape`
    with the dimension along `axis` removed. If `keepdims` is set to True,
    then the size of `axis` will be 1 with the resulting array having same
    shape as `a.shape`.

See Also
--------
ndarray.argmin, argmax
amin : The minimum value along a given axis.
unravel_index : Convert a flat index into an index tuple.
take_along_axis : Apply ``np.expand_dims(index_array, axis)``
                  from argmin to an array as if by calling min.

Notes
-----
In case of multiple occurrences of the minimum values, the indices
corresponding to the first occurrence are returned.

Examples
--------
>>> import numpy as np
>>> a = np.arange(6).reshape(2,3) + 10
>>> a
array([[10, 11, 12],
       [13, 14, 15]])
>>> np.argmin(a)
0
>>> np.argmin(a, axis=0)
array([0, 0, 0])
>>> np.argmin(a, axis=1)
array([0, 0])

Indices of the minimum elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
>>> ind
(0, 0)
>>> a[ind]
10

>>> b = np.arange(6) + 10
>>> b[4] = 10
>>> b
array([10, 11, 12, 13, 10, 15])
>>> np.argmin(b)  # Only the first occurrence is returned.
0

>>> x = np.array([[4,2,3], [1,0,3]])
>>> index_array = np.argmin(x, axis=-1)
>>> # Same as np.amin(x, axis=-1, keepdims=True)
>>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
array([[2],
       [0]])
>>> # Same as np.amax(x, axis=-1)
>>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1),
...     axis=-1).squeeze(axis=-1)
array([2, 0])

Setting `keepdims` to `True`,

>>> x = np.arange(24).reshape((2, 3, 4))
>>> res = np.argmin(x, axis=1, keepdims=True)
>>> res.shape
(2, 1, 4)


Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé