Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction argmin - module numpy.matlib

Signature de la fonction argmin

def argmin(a, axis=None, out=None) 

Description

argmin.__doc__

    Returns the indices of the minimum values along an axis.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        By default, the index is into the flattened array, otherwise
        along the specified axis.
    out : array, optional
        If provided, the result will be inserted into this array. It should
        be of the appropriate shape and dtype.

    Returns
    -------
    index_array : ndarray of ints
        Array of indices into the array. It has the same shape as `a.shape`
        with the dimension along `axis` removed.

    See Also
    --------
    ndarray.argmin, argmax
    amin : The minimum value along a given axis.
    unravel_index : Convert a flat index into an index tuple.
    take_along_axis : Apply ``np.expand_dims(index_array, axis)``
                      from argmin to an array as if by calling min.

    Notes
    -----
    In case of multiple occurrences of the minimum values, the indices
    corresponding to the first occurrence are returned.

    Examples
    --------
    >>> a = np.arange(6).reshape(2,3) + 10
    >>> a
    array([[10, 11, 12],
           [13, 14, 15]])
    >>> np.argmin(a)
    0
    >>> np.argmin(a, axis=0)
    array([0, 0, 0])
    >>> np.argmin(a, axis=1)
    array([0, 0])

    Indices of the minimum elements of a N-dimensional array:

    >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
    >>> ind
    (0, 0)
    >>> a[ind]
    10

    >>> b = np.arange(6) + 10
    >>> b[4] = 10
    >>> b
    array([10, 11, 12, 13, 10, 15])
    >>> np.argmin(b)  # Only the first occurrence is returned.
    0

    >>> x = np.array([[4,2,3], [1,0,3]])
    >>> index_array = np.argmin(x, axis=-1)
    >>> # Same as np.min(x, axis=-1, keepdims=True)
    >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)
    array([[2],
           [0]])
    >>> # Same as np.max(x, axis=-1)
    >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1)
    array([2, 0])