Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction power - module numpy.matlib

Signature de la fonction power

Description

power.__doc__

power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

First array elements raised to powers from second array, element-wise.

Raise each base in `x1` to the positionally-corresponding power in
`x2`.  `x1` and `x2` must be broadcastable to the same shape. Note that an
integer type raised to a negative integer power will raise a ValueError.

Parameters
----------
x1 : array_like
    The bases.
x2 : array_like
    The exponents.
    If ``x1.shape != x2.shape``, they must be broadcastable to a common
    shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
    A location into which the result is stored. If provided, it must have
    a shape that the inputs broadcast to. If not provided or None,
    a freshly-allocated array is returned. A tuple (possible only as a
    keyword argument) must have length equal to the number of outputs.
where : array_like, optional
    This condition is broadcast over the input. At locations where the
    condition is True, the `out` array will be set to the ufunc result.
    Elsewhere, the `out` array will retain its original value.
    Note that if an uninitialized `out` array is created via the default
    ``out=None``, locations within it where the condition is False will
    remain uninitialized.
**kwargs
    For other keyword-only arguments, see the
    :ref:`ufunc docs <ufuncs.kwargs>`.

Returns
-------
y : ndarray
    The bases in `x1` raised to the exponents in `x2`.
    This is a scalar if both `x1` and `x2` are scalars.

See Also
--------
float_power : power function that promotes integers to float

Examples
--------
Cube each element in an array.

>>> x1 = np.arange(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.power(x1, 3)
array([  0,   1,   8,  27,  64, 125])

Raise the bases to different exponents.

>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.power(x1, x2)
array([  0.,   1.,   8.,  27.,  16.,   5.])

The effect of broadcasting.

>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],
       [1, 2, 3, 3, 2, 1]])
>>> np.power(x1, x2)
array([[ 0,  1,  8, 27, 16,  5],
       [ 0,  1,  8, 27, 16,  5]])

The ``**`` operator can be used as a shorthand for ``np.power`` on
ndarrays.

>>> x2 = np.array([1, 2, 3, 3, 2, 1])
>>> x1 = np.arange(6)
>>> x1 ** x2
array([ 0,  1,  8, 27, 16,  5])