Module « numpy.matlib »
Signature de la fonction apply_along_axis
def apply_along_axis(func1d, axis, arr, *args, **kwargs)
Description
apply_along_axis.__doc__
Apply a function to 1-D slices along the given axis.
Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays
and `a` is a 1-D slice of `arr` along `axis`.
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):
out[ii + jj + kk] = f[jj]
Equivalently, eliminating the inner loop, this can be expressed as::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
Parameters
----------
func1d : function (M,) -> (Nj...)
This function should accept 1-D arrays. It is applied to 1-D
slices of `arr` along the specified axis.
axis : integer
Axis along which `arr` is sliced.
arr : ndarray (Ni..., M, Nk...)
Input array.
args : any
Additional arguments to `func1d`.
kwargs : any
Additional named arguments to `func1d`.
.. versionadded:: 1.9.0
Returns
-------
out : ndarray (Ni..., Nj..., Nk...)
The output array. The shape of `out` is identical to the shape of
`arr`, except along the `axis` dimension. This axis is removed, and
replaced with new dimensions equal to the shape of the return value
of `func1d`. So if `func1d` returns a scalar `out` will have one
fewer dimensions than `arr`.
See Also
--------
apply_over_axes : Apply a function repeatedly over multiple axes.
Examples
--------
>>> def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in
`outarr` is the same as `arr`.
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
For a function that returns a higher dimensional array, those dimensions
are inserted in place of the `axis` dimension.
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],
[0, 2, 0],
[0, 0, 3]],
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],
[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :