Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Module « numpy.matlib »
Signature de la fonction insert
def insert(arr, obj, values, axis=None)
Description
help(numpy.matlib.insert)
Insert values along the given axis before the given indices.
Parameters
----------
arr : array_like
Input array.
obj : slice, int, array-like of ints or bools
Object that defines the index or indices before which `values` is
inserted.
.. versionchanged:: 2.1.2
Boolean indices are now treated as a mask of elements to insert,
rather than being cast to the integers 0 and 1.
Support for multiple insertions when `obj` is a single scalar or a
sequence with one element (similar to calling insert multiple
times).
values : array_like
Values to insert into `arr`. If the type of `values` is different
from that of `arr`, `values` is converted to the type of `arr`.
`values` should be shaped so that ``arr[...,obj,...] = values``
is legal.
axis : int, optional
Axis along which to insert `values`. If `axis` is None then `arr`
is flattened first.
Returns
-------
out : ndarray
A copy of `arr` with `values` inserted. Note that `insert`
does not occur in-place: a new array is returned. If
`axis` is None, `out` is a flattened array.
See Also
--------
append : Append elements at the end of an array.
concatenate : Join a sequence of arrays along an existing axis.
delete : Delete elements from an array.
Notes
-----
Note that for higher dimensional inserts ``obj=0`` behaves very different
from ``obj=[0]`` just like ``arr[:,0,:] = values`` is different from
``arr[:,[0],:] = values``. This is because of the difference between basic
and advanced :ref:`indexing <basics.indexing>`.
Examples
--------
>>> import numpy as np
>>> a = np.arange(6).reshape(3, 2)
>>> a
array([[0, 1],
[2, 3],
[4, 5]])
>>> np.insert(a, 1, 6)
array([0, 6, 1, 2, 3, 4, 5])
>>> np.insert(a, 1, 6, axis=1)
array([[0, 6, 1],
[2, 6, 3],
[4, 6, 5]])
Difference between sequence and scalars,
showing how ``obj=[1]`` behaves different from ``obj=1``:
>>> np.insert(a, [1], [[7],[8],[9]], axis=1)
array([[0, 7, 1],
[2, 8, 3],
[4, 9, 5]])
>>> np.insert(a, 1, [[7],[8],[9]], axis=1)
array([[0, 7, 8, 9, 1],
[2, 7, 8, 9, 3],
[4, 7, 8, 9, 5]])
>>> np.array_equal(np.insert(a, 1, [7, 8, 9], axis=1),
... np.insert(a, [1], [[7],[8],[9]], axis=1))
True
>>> b = a.flatten()
>>> b
array([0, 1, 2, 3, 4, 5])
>>> np.insert(b, [2, 2], [6, 7])
array([0, 1, 6, 7, 2, 3, 4, 5])
>>> np.insert(b, slice(2, 4), [7, 8])
array([0, 1, 7, 2, 8, 3, 4, 5])
>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([0, 1, 7, 0, 2, 3, 4, 5])
>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[ 0, 999, 1, 2, 999, 3],
[ 4, 999, 5, 6, 999, 7]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les fondamentaux
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :