Module « numpy.matlib »
Signature de la fonction insert
def insert(arr, obj, values, axis=None)
Description
insert.__doc__
Insert values along the given axis before the given indices.
Parameters
----------
arr : array_like
Input array.
obj : int, slice or sequence of ints
Object that defines the index or indices before which `values` is
inserted.
.. versionadded:: 1.8.0
Support for multiple insertions when `obj` is a single scalar or a
sequence with one element (similar to calling insert multiple
times).
values : array_like
Values to insert into `arr`. If the type of `values` is different
from that of `arr`, `values` is converted to the type of `arr`.
`values` should be shaped so that ``arr[...,obj,...] = values``
is legal.
axis : int, optional
Axis along which to insert `values`. If `axis` is None then `arr`
is flattened first.
Returns
-------
out : ndarray
A copy of `arr` with `values` inserted. Note that `insert`
does not occur in-place: a new array is returned. If
`axis` is None, `out` is a flattened array.
See Also
--------
append : Append elements at the end of an array.
concatenate : Join a sequence of arrays along an existing axis.
delete : Delete elements from an array.
Notes
-----
Note that for higher dimensional inserts `obj=0` behaves very different
from `obj=[0]` just like `arr[:,0,:] = values` is different from
`arr[:,[0],:] = values`.
Examples
--------
>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1, 1],
[2, 2],
[3, 3]])
>>> np.insert(a, 1, 5)
array([1, 5, 1, ..., 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],
[2, 5, 2],
[3, 5, 3]])
Difference between sequence and scalars:
>>> np.insert(a, [1], [[1],[2],[3]], axis=1)
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
... np.insert(a, [1], [[1],[2],[3]], axis=1))
True
>>> b = a.flatten()
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, ..., 2, 3, 3])
>>> np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, ..., 2, 3, 3])
>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, ..., 2, 3, 3])
>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[ 0, 999, 1, 2, 999, 3],
[ 4, 999, 5, 6, 999, 7]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :