Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Calcul scientifique
avec Python
Voir le programme détaillé
Module « numpy.matlib »

Fonction polyfit - module numpy.matlib

Signature de la fonction polyfit

def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False) 

Description

help(numpy.matlib.polyfit)

Least squares polynomial fit.

.. note::
   This forms part of the old polynomial API. Since version 1.4, the
   new polynomial API defined in `numpy.polynomial` is preferred.
   A summary of the differences can be found in the
   :doc:`transition guide </reference/routines.polynomials>`.

Fit a polynomial ``p(x) = p[0] * x**deg + ... + p[deg]`` of degree `deg`
to points `(x, y)`. Returns a vector of coefficients `p` that minimises
the squared error in the order `deg`, `deg-1`, ... `0`.

The `Polynomial.fit <numpy.polynomial.polynomial.Polynomial.fit>` class
method is recommended for new code as it is more stable numerically. See
the documentation of the method for more information.

Parameters
----------
x : array_like, shape (M,)
    x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
    y-coordinates of the sample points. Several data sets of sample
    points sharing the same x-coordinates can be fitted at once by
    passing in a 2D-array that contains one dataset per column.
deg : int
    Degree of the fitting polynomial
rcond : float, optional
    Relative condition number of the fit. Singular values smaller than
    this relative to the largest singular value will be ignored. The
    default value is len(x)*eps, where eps is the relative precision of
    the float type, about 2e-16 in most cases.
full : bool, optional
    Switch determining nature of return value. When it is False (the
    default) just the coefficients are returned, when True diagnostic
    information from the singular value decomposition is also returned.
w : array_like, shape (M,), optional
    Weights. If not None, the weight ``w[i]`` applies to the unsquared
    residual ``y[i] - y_hat[i]`` at ``x[i]``. Ideally the weights are
    chosen so that the errors of the products ``w[i]*y[i]`` all have the
    same variance.  When using inverse-variance weighting, use
    ``w[i] = 1/sigma(y[i])``.  The default value is None.
cov : bool or str, optional
    If given and not `False`, return not just the estimate but also its
    covariance matrix. By default, the covariance are scaled by
    chi2/dof, where dof = M - (deg + 1), i.e., the weights are presumed
    to be unreliable except in a relative sense and everything is scaled
    such that the reduced chi2 is unity. This scaling is omitted if
    ``cov='unscaled'``, as is relevant for the case that the weights are
    w = 1/sigma, with sigma known to be a reliable estimate of the
    uncertainty.

Returns
-------
p : ndarray, shape (deg + 1,) or (deg + 1, K)
    Polynomial coefficients, highest power first.  If `y` was 2-D, the
    coefficients for `k`-th data set are in ``p[:,k]``.

residuals, rank, singular_values, rcond
    These values are only returned if ``full == True``

    - residuals -- sum of squared residuals of the least squares fit
    - rank -- the effective rank of the scaled Vandermonde
       coefficient matrix
    - singular_values -- singular values of the scaled Vandermonde
       coefficient matrix
    - rcond -- value of `rcond`.

    For more details, see `numpy.linalg.lstsq`.

V : ndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K)
    Present only if ``full == False`` and ``cov == True``.  The covariance
    matrix of the polynomial coefficient estimates.  The diagonal of
    this matrix are the variance estimates for each coefficient.  If y
    is a 2-D array, then the covariance matrix for the `k`-th data set
    are in ``V[:,:,k]``


Warns
-----
RankWarning
    The rank of the coefficient matrix in the least-squares fit is
    deficient. The warning is only raised if ``full == False``.

    The warnings can be turned off by

    >>> import warnings
    >>> warnings.simplefilter('ignore', np.exceptions.RankWarning)

See Also
--------
polyval : Compute polynomial values.
linalg.lstsq : Computes a least-squares fit.
scipy.interpolate.UnivariateSpline : Computes spline fits.

Notes
-----
The solution minimizes the squared error

.. math::
    E = \sum_{j=0}^k |p(x_j) - y_j|^2

in the equations::

    x[0]**n * p[0] + ... + x[0] * p[n-1] + p[n] = y[0]
    x[1]**n * p[0] + ... + x[1] * p[n-1] + p[n] = y[1]
    ...
    x[k]**n * p[0] + ... + x[k] * p[n-1] + p[n] = y[k]

The coefficient matrix of the coefficients `p` is a Vandermonde matrix.

`polyfit` issues a `~exceptions.RankWarning` when the least-squares fit is
badly conditioned. This implies that the best fit is not well-defined due
to numerical error. The results may be improved by lowering the polynomial
degree or by replacing `x` by `x` - `x`.mean(). The `rcond` parameter
can also be set to a value smaller than its default, but the resulting
fit may be spurious: including contributions from the small singular
values can add numerical noise to the result.

Note that fitting polynomial coefficients is inherently badly conditioned
when the degree of the polynomial is large or the interval of sample points
is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good
alternative.

References
----------
.. [1] Wikipedia, "Curve fitting",
       https://en.wikipedia.org/wiki/Curve_fitting
.. [2] Wikipedia, "Polynomial interpolation",
       https://en.wikipedia.org/wiki/Polynomial_interpolation

Examples
--------
>>> import numpy as np
>>> import warnings
>>> x = np.array([0.0, 1.0, 2.0, 3.0,  4.0,  5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> z
array([ 0.08703704, -0.81349206,  1.69312169, -0.03968254]) # may vary

It is convenient to use `poly1d` objects for dealing with polynomials:

>>> p = np.poly1d(z)
>>> p(0.5)
0.6143849206349179 # may vary
>>> p(3.5)
-0.34732142857143039 # may vary
>>> p(10)
22.579365079365115 # may vary

High-order polynomials may oscillate wildly:

>>> with warnings.catch_warnings():
...     warnings.simplefilter('ignore', np.exceptions.RankWarning)
...     p30 = np.poly1d(np.polyfit(x, y, 30))
...
>>> p30(4)
-0.80000000000000204 # may vary
>>> p30(5)
-0.99999999999999445 # may vary
>>> p30(4.5)
-0.10547061179440398 # may vary

Illustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace(-2, 6, 100)
>>> _ = plt.plot(x, y, '.', xp, p(xp), '-', xp, p30(xp), '--')
>>> plt.ylim(-2,2)
(-2, 2)
>>> plt.show()



Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé