Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « numpy.matlib »

Classe « poly1d »

Informations générales

Héritage

builtins.object
    poly1d

Définition

class poly1d(builtins.object):

help(poly1d)

A one-dimensional polynomial class.

.. note::
   This forms part of the old polynomial API. Since version 1.4, the
   new polynomial API defined in `numpy.polynomial` is preferred.
   A summary of the differences can be found in the
   :doc:`transition guide </reference/routines.polynomials>`.

A convenience class, used to encapsulate "natural" operations on
polynomials so that said operations may take on their customary
form in code (see Examples).

Parameters
----------
c_or_r : array_like
    The polynomial's coefficients, in decreasing powers, or if
    the value of the second parameter is True, the polynomial's
    roots (values where the polynomial evaluates to 0).  For example,
    ``poly1d([1, 2, 3])`` returns an object that represents
    :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns
    one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`.
r : bool, optional
    If True, `c_or_r` specifies the polynomial's roots; the default
    is False.
variable : str, optional
    Changes the variable used when printing `p` from `x` to `variable`
    (see Examples).

Examples
--------
Construct the polynomial :math:`x^2 + 2x + 3`:

>>> import numpy as np

>>> p = np.poly1d([1, 2, 3])
>>> print(np.poly1d(p))
   2
1 x + 2 x + 3

Evaluate the polynomial at :math:`x = 0.5`:

>>> p(0.5)
4.25

Find the roots:

>>> p.r
array([-1.+1.41421356j, -1.-1.41421356j])
>>> p(p.r)
array([ -4.44089210e-16+0.j,  -4.44089210e-16+0.j]) # may vary

These numbers in the previous line represent (0, 0) to machine precision

Show the coefficients:

>>> p.c
array([1, 2, 3])

Display the order (the leading zero-coefficients are removed):

>>> p.order
2

Show the coefficient of the k-th power in the polynomial
(which is equivalent to ``p.c[-(i+1)]``):

>>> p[1]
2

Polynomials can be added, subtracted, multiplied, and divided
(returns quotient and remainder):

>>> p * p
poly1d([ 1,  4, 10, 12,  9])

>>> (p**3 + 4) / p
(poly1d([ 1.,  4., 10., 12.,  9.]), poly1d([4.]))

``asarray(p)`` gives the coefficient array, so polynomials can be
used in all functions that accept arrays:

>>> p**2 # square of polynomial
poly1d([ 1,  4, 10, 12,  9])

>>> np.square(p) # square of individual coefficients
array([1, 4, 9])

The variable used in the string representation of `p` can be modified,
using the `variable` parameter:

>>> p = np.poly1d([1,2,3], variable='z')
>>> print(p)
   2
1 z + 2 z + 3

Construct a polynomial from its roots:

>>> np.poly1d([1, 2], True)
poly1d([ 1., -3.,  2.])

This is the same polynomial as obtained by:

>>> np.poly1d([1, -1]) * np.poly1d([1, -2])
poly1d([ 1, -3,  2])

Constructeur(s)

Signature du constructeur Description
__init__(self, c_or_r, r=False, variable=None)

Liste des propriétés

Nom de la propriétéDescription
cThe polynomial coefficients [extrait de coefficients.__doc__]
coefThe polynomial coefficients [extrait de coefficients.__doc__]
coefficientsThe polynomial coefficients [extrait de coefficients.__doc__]
coeffsThe polynomial coefficients [extrait de coefficients.__doc__]
oThe order or degree of the polynomial [extrait de o.__doc__]
orderThe order or degree of the polynomial [extrait de o.__doc__]
rThe roots of the polynomial, where self(x) == 0 [extrait de r.__doc__]
rootsThe roots of the polynomial, where self(x) == 0 [extrait de r.__doc__]
variableThe name of the polynomial variable [extrait de variable.__doc__]

Liste des opérateurs

Signature de l'opérateur Description
__add__(self, other)
__eq__(self, other)
__getitem__(self, val)
__mul__(self, other)
__ne__(self, other)
__neg__(self)
__pos__(self)
__pow__(self, val)
__radd__(self, other)
__rmul__(self, other)
__rsub__(self, other)
__rtruediv__(self, other)
__setitem__(self, key, val)
__sub__(self, other)
__truediv__(self, other)

Opérateurs hérités de la classe object

__ge__, __gt__, __le__, __lt__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__array__(self, t=None, copy=None)
__call__(self, val)
__div__(self, other)
__iter__(self)
__len__(self)
__rdiv__(self, other)
__repr__(self)
__str__(self)
deriv(self, m=1)
integ(self, m=1, k=0)

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __getstate__, __hash__, __init_subclass__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé