Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Module « numpy.matlib »
Signature de la fonction cumulative_prod
def cumulative_prod(x, /, *, axis=None, dtype=None, out=None, include_initial=False)
Description
help(numpy.matlib.cumulative_prod)
Return the cumulative product of elements along a given axis.
This function is an Array API compatible alternative to `numpy.cumprod`.
Parameters
----------
x : array_like
Input array.
axis : int, optional
Axis along which the cumulative product is computed. The default
(None) is only allowed for one-dimensional arrays. For arrays
with more than one dimension ``axis`` is required.
dtype : dtype, optional
Type of the returned array, as well as of the accumulator in which
the elements are multiplied. If ``dtype`` is not specified, it
defaults to the dtype of ``x``, unless ``x`` has an integer dtype
with a precision less than that of the default platform integer.
In that case, the default platform integer is used instead.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.
See :ref:`ufuncs-output-type` for more details.
include_initial : bool, optional
Boolean indicating whether to include the initial value (ones) as
the first value in the output. With ``include_initial=True``
the shape of the output is different than the shape of the input.
Default: ``False``.
Returns
-------
cumulative_prod_along_axis : ndarray
A new array holding the result is returned unless ``out`` is
specified, in which case a reference to ``out`` is returned. The
result has the same shape as ``x`` if ``include_initial=False``.
Notes
-----
Arithmetic is modular when using integer types, and no error is
raised on overflow.
Examples
--------
>>> a = np.array([1, 2, 3])
>>> np.cumulative_prod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> np.cumulative_prod(a, dtype=float) # specify type of output
array([ 1., 2., 6., 24., 120., 720.])
The cumulative product for each column (i.e., over the rows) of ``b``:
>>> b = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumulative_prod(b, axis=0)
array([[ 1, 2, 3],
[ 4, 10, 18]])
The cumulative product for each row (i.e. over the columns) of ``b``:
>>> np.cumulative_prod(b, axis=1)
array([[ 1, 2, 6],
[ 4, 20, 120]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Mise en oeuvre d'IHM
avec Qt et PySide6
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :