Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction vstack - module numpy.matlib

Signature de la fonction vstack

def vstack(tup) 

Description

vstack.__doc__

    Stack arrays in sequence vertically (row wise).

    This is equivalent to concatenation along the first axis after 1-D arrays
    of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by
    `vsplit`.

    This function makes most sense for arrays with up to 3 dimensions. For
    instance, for pixel-data with a height (first axis), width (second axis),
    and r/g/b channels (third axis). The functions `concatenate`, `stack` and
    `block` provide more general stacking and concatenation operations.

    Parameters
    ----------
    tup : sequence of ndarrays
        The arrays must have the same shape along all but the first axis.
        1-D arrays must have the same length.

    Returns
    -------
    stacked : ndarray
        The array formed by stacking the given arrays, will be at least 2-D.

    See Also
    --------
    concatenate : Join a sequence of arrays along an existing axis.
    stack : Join a sequence of arrays along a new axis.
    block : Assemble an nd-array from nested lists of blocks.
    hstack : Stack arrays in sequence horizontally (column wise).
    dstack : Stack arrays in sequence depth wise (along third axis).
    column_stack : Stack 1-D arrays as columns into a 2-D array.
    vsplit : Split an array into multiple sub-arrays vertically (row-wise).

    Examples
    --------
    >>> a = np.array([1, 2, 3])
    >>> b = np.array([2, 3, 4])
    >>> np.vstack((a,b))
    array([[1, 2, 3],
           [2, 3, 4]])

    >>> a = np.array([[1], [2], [3]])
    >>> b = np.array([[2], [3], [4]])
    >>> np.vstack((a,b))
    array([[1],
           [2],
           [3],
           [2],
           [3],
           [4]])