Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy.matlib »

Fonction interp - module numpy.matlib

Signature de la fonction interp

def interp(x, xp, fp, left=None, right=None, period=None) 

Description

interp.__doc__

    One-dimensional linear interpolation.

    Returns the one-dimensional piecewise linear interpolant to a function
    with given discrete data points (`xp`, `fp`), evaluated at `x`.

    Parameters
    ----------
    x : array_like
        The x-coordinates at which to evaluate the interpolated values.

    xp : 1-D sequence of floats
        The x-coordinates of the data points, must be increasing if argument
        `period` is not specified. Otherwise, `xp` is internally sorted after
        normalizing the periodic boundaries with ``xp = xp % period``.

    fp : 1-D sequence of float or complex
        The y-coordinates of the data points, same length as `xp`.

    left : optional float or complex corresponding to fp
        Value to return for `x < xp[0]`, default is `fp[0]`.

    right : optional float or complex corresponding to fp
        Value to return for `x > xp[-1]`, default is `fp[-1]`.

    period : None or float, optional
        A period for the x-coordinates. This parameter allows the proper
        interpolation of angular x-coordinates. Parameters `left` and `right`
        are ignored if `period` is specified.

        .. versionadded:: 1.10.0

    Returns
    -------
    y : float or complex (corresponding to fp) or ndarray
        The interpolated values, same shape as `x`.

    Raises
    ------
    ValueError
        If `xp` and `fp` have different length
        If `xp` or `fp` are not 1-D sequences
        If `period == 0`

    See Also
    --------
    scipy.interpolate

    Notes
    -----
    The x-coordinate sequence is expected to be increasing, but this is not
    explicitly enforced.  However, if the sequence `xp` is non-increasing,
    interpolation results are meaningless.

    Note that, since NaN is unsortable, `xp` also cannot contain NaNs.

    A simple check for `xp` being strictly increasing is::

        np.all(np.diff(xp) > 0)

    Examples
    --------
    >>> xp = [1, 2, 3]
    >>> fp = [3, 2, 0]
    >>> np.interp(2.5, xp, fp)
    1.0
    >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
    array([3.  , 3.  , 2.5 , 0.56, 0.  ])
    >>> UNDEF = -99.0
    >>> np.interp(3.14, xp, fp, right=UNDEF)
    -99.0

    Plot an interpolant to the sine function:

    >>> x = np.linspace(0, 2*np.pi, 10)
    >>> y = np.sin(x)
    >>> xvals = np.linspace(0, 2*np.pi, 50)
    >>> yinterp = np.interp(xvals, x, y)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.plot(xvals, yinterp, '-x')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.show()

    Interpolation with periodic x-coordinates:

    >>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
    >>> xp = [190, -190, 350, -350]
    >>> fp = [5, 10, 3, 4]
    >>> np.interp(x, xp, fp, period=360)
    array([7.5 , 5.  , 8.75, 6.25, 3.  , 3.25, 3.5 , 3.75])

    Complex interpolation:

    >>> x = [1.5, 4.0]
    >>> xp = [2,3,5]
    >>> fp = [1.0j, 0, 2+3j]
    >>> np.interp(x, xp, fp)
    array([0.+1.j , 1.+1.5j])