Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « numpy.matlib »

Fonction corrcoef - module numpy.matlib

Signature de la fonction corrcoef

def corrcoef(x, y=None, rowvar=True, bias=<no value>, ddof=<no value>, *, dtype=None) 

Description

help(numpy.matlib.corrcoef)

Return Pearson product-moment correlation coefficients.

Please refer to the documentation for `cov` for more detail.  The
relationship between the correlation coefficient matrix, `R`, and the
covariance matrix, `C`, is

.. math:: R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} C_{jj} } }

The values of `R` are between -1 and 1, inclusive.

Parameters
----------
x : array_like
    A 1-D or 2-D array containing multiple variables and observations.
    Each row of `x` represents a variable, and each column a single
    observation of all those variables. Also see `rowvar` below.
y : array_like, optional
    An additional set of variables and observations. `y` has the same
    shape as `x`.
rowvar : bool, optional
    If `rowvar` is True (default), then each row represents a
    variable, with observations in the columns. Otherwise, the relationship
    is transposed: each column represents a variable, while the rows
    contain observations.
bias : _NoValue, optional
    Has no effect, do not use.

    .. deprecated:: 1.10.0
ddof : _NoValue, optional
    Has no effect, do not use.

    .. deprecated:: 1.10.0
dtype : data-type, optional
    Data-type of the result. By default, the return data-type will have
    at least `numpy.float64` precision.

    .. versionadded:: 1.20

Returns
-------
R : ndarray
    The correlation coefficient matrix of the variables.

See Also
--------
cov : Covariance matrix

Notes
-----
Due to floating point rounding the resulting array may not be Hermitian,
the diagonal elements may not be 1, and the elements may not satisfy the
inequality abs(a) <= 1. The real and imaginary parts are clipped to the
interval [-1,  1] in an attempt to improve on that situation but is not
much help in the complex case.

This function accepts but discards arguments `bias` and `ddof`.  This is
for backwards compatibility with previous versions of this function.  These
arguments had no effect on the return values of the function and can be
safely ignored in this and previous versions of numpy.

Examples
--------
>>> import numpy as np

In this example we generate two random arrays, ``xarr`` and ``yarr``, and
compute the row-wise and column-wise Pearson correlation coefficients,
``R``. Since ``rowvar`` is  true by  default, we first find the row-wise
Pearson correlation coefficients between the variables of ``xarr``.

>>> import numpy as np
>>> rng = np.random.default_rng(seed=42)
>>> xarr = rng.random((3, 3))
>>> xarr
array([[0.77395605, 0.43887844, 0.85859792],
       [0.69736803, 0.09417735, 0.97562235],
       [0.7611397 , 0.78606431, 0.12811363]])
>>> R1 = np.corrcoef(xarr)
>>> R1
array([[ 1.        ,  0.99256089, -0.68080986],
       [ 0.99256089,  1.        , -0.76492172],
       [-0.68080986, -0.76492172,  1.        ]])

If we add another set of variables and observations ``yarr``, we can
compute the row-wise Pearson correlation coefficients between the
variables in ``xarr`` and ``yarr``.

>>> yarr = rng.random((3, 3))
>>> yarr
array([[0.45038594, 0.37079802, 0.92676499],
       [0.64386512, 0.82276161, 0.4434142 ],
       [0.22723872, 0.55458479, 0.06381726]])
>>> R2 = np.corrcoef(xarr, yarr)
>>> R2
array([[ 1.        ,  0.99256089, -0.68080986,  0.75008178, -0.934284  ,
        -0.99004057],
       [ 0.99256089,  1.        , -0.76492172,  0.82502011, -0.97074098,
        -0.99981569],
       [-0.68080986, -0.76492172,  1.        , -0.99507202,  0.89721355,
         0.77714685],
       [ 0.75008178,  0.82502011, -0.99507202,  1.        , -0.93657855,
        -0.83571711],
       [-0.934284  , -0.97074098,  0.89721355, -0.93657855,  1.        ,
         0.97517215],
       [-0.99004057, -0.99981569,  0.77714685, -0.83571711,  0.97517215,
         1.        ]])

Finally if we use the option ``rowvar=False``, the columns are now
being treated as the variables and we will find the column-wise Pearson
correlation coefficients between variables in ``xarr`` and ``yarr``.

>>> R3 = np.corrcoef(xarr, yarr, rowvar=False)
>>> R3
array([[ 1.        ,  0.77598074, -0.47458546, -0.75078643, -0.9665554 ,
         0.22423734],
       [ 0.77598074,  1.        , -0.92346708, -0.99923895, -0.58826587,
        -0.44069024],
       [-0.47458546, -0.92346708,  1.        ,  0.93773029,  0.23297648,
         0.75137473],
       [-0.75078643, -0.99923895,  0.93773029,  1.        ,  0.55627469,
         0.47536961],
       [-0.9665554 , -0.58826587,  0.23297648,  0.55627469,  1.        ,
        -0.46666491],
       [ 0.22423734, -0.44069024,  0.75137473,  0.47536961, -0.46666491,
         1.        ]])



Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé