Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les compléments
Voir le programme détaillé
Module « numpy.matlib »

Fonction array2string - module numpy.matlib

Signature de la fonction array2string

def array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix='', style=<no value>, formatter=None, threshold=None, edgeitems=None, sign=None, floatmode=None, suffix='', *, legacy=None) 

Description

help(numpy.matlib.array2string)

Return a string representation of an array.

Parameters
----------
a : ndarray
    Input array.
max_line_width : int, optional
    Inserts newlines if text is longer than `max_line_width`.
    Defaults to ``numpy.get_printoptions()['linewidth']``.
precision : int or None, optional
    Floating point precision.
    Defaults to ``numpy.get_printoptions()['precision']``.
suppress_small : bool, optional
    Represent numbers "very close" to zero as zero; default is False.
    Very close is defined by precision: if the precision is 8, e.g.,
    numbers smaller (in absolute value) than 5e-9 are represented as
    zero.
    Defaults to ``numpy.get_printoptions()['suppress']``.
separator : str, optional
    Inserted between elements.
prefix : str, optional
suffix : str, optional
    The length of the prefix and suffix strings are used to respectively
    align and wrap the output. An array is typically printed as::

      prefix + array2string(a) + suffix

    The output is left-padded by the length of the prefix string, and
    wrapping is forced at the column ``max_line_width - len(suffix)``.
    It should be noted that the content of prefix and suffix strings are
    not included in the output.
style : _NoValue, optional
    Has no effect, do not use.

    .. deprecated:: 1.14.0
formatter : dict of callables, optional
    If not None, the keys should indicate the type(s) that the respective
    formatting function applies to.  Callables should return a string.
    Types that are not specified (by their corresponding keys) are handled
    by the default formatters.  Individual types for which a formatter
    can be set are:

    - 'bool'
    - 'int'
    - 'timedelta' : a `numpy.timedelta64`
    - 'datetime' : a `numpy.datetime64`
    - 'float'
    - 'longfloat' : 128-bit floats
    - 'complexfloat'
    - 'longcomplexfloat' : composed of two 128-bit floats
    - 'void' : type `numpy.void`
    - 'numpystr' : types `numpy.bytes_` and `numpy.str_`

    Other keys that can be used to set a group of types at once are:

    - 'all' : sets all types
    - 'int_kind' : sets 'int'
    - 'float_kind' : sets 'float' and 'longfloat'
    - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat'
    - 'str_kind' : sets 'numpystr'
threshold : int, optional
    Total number of array elements which trigger summarization
    rather than full repr.
    Defaults to ``numpy.get_printoptions()['threshold']``.
edgeitems : int, optional
    Number of array items in summary at beginning and end of
    each dimension.
    Defaults to ``numpy.get_printoptions()['edgeitems']``.
sign : string, either '-', '+', or ' ', optional
    Controls printing of the sign of floating-point types. If '+', always
    print the sign of positive values. If ' ', always prints a space
    (whitespace character) in the sign position of positive values.  If
    '-', omit the sign character of positive values.
    Defaults to ``numpy.get_printoptions()['sign']``.

    .. versionchanged:: 2.0
         The sign parameter can now be an integer type, previously
         types were floating-point types.

floatmode : str, optional
    Controls the interpretation of the `precision` option for
    floating-point types.
    Defaults to ``numpy.get_printoptions()['floatmode']``.
    Can take the following values:

    - 'fixed': Always print exactly `precision` fractional digits,
      even if this would print more or fewer digits than
      necessary to specify the value uniquely.
    - 'unique': Print the minimum number of fractional digits necessary
      to represent each value uniquely. Different elements may
      have a different number of digits.  The value of the
      `precision` option is ignored.
    - 'maxprec': Print at most `precision` fractional digits, but if
      an element can be uniquely represented with fewer digits
      only print it with that many.
    - 'maxprec_equal': Print at most `precision` fractional digits,
      but if every element in the array can be uniquely
      represented with an equal number of fewer digits, use that
      many digits for all elements.
legacy : string or `False`, optional
    If set to the string ``'1.13'`` enables 1.13 legacy printing mode. This
    approximates numpy 1.13 print output by including a space in the sign
    position of floats and different behavior for 0d arrays. If set to
    `False`, disables legacy mode. Unrecognized strings will be ignored
    with a warning for forward compatibility.

Returns
-------
array_str : str
    String representation of the array.

Raises
------
TypeError
    if a callable in `formatter` does not return a string.

See Also
--------
array_str, array_repr, set_printoptions, get_printoptions

Notes
-----
If a formatter is specified for a certain type, the `precision` keyword is
ignored for that type.

This is a very flexible function; `array_repr` and `array_str` are using
`array2string` internally so keywords with the same name should work
identically in all three functions.

Examples
--------
>>> import numpy as np
>>> x = np.array([1e-16,1,2,3])
>>> np.array2string(x, precision=2, separator=',',
...                       suppress_small=True)
'[0.,1.,2.,3.]'

>>> x  = np.arange(3.)
>>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x})
'[0.00 1.00 2.00]'

>>> x  = np.arange(3)
>>> np.array2string(x, formatter={'int':lambda x: hex(x)})
'[0x0 0x1 0x2]'



Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé