builtins.object ndarray
class ndarray(builtins.object):
ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None) An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.) Arrays should be constructed using `array`, `zeros` or `empty` (refer to the See Also section below). The parameters given here refer to a low-level method (`ndarray(...)`) for instantiating an array. For more information, refer to the `numpy` module and examine the methods and attributes of an array. Parameters ---------- (for the __new__ method; see Notes below) shape : tuple of ints Shape of created array. dtype : data-type, optional Any object that can be interpreted as a numpy data type. buffer : object exposing buffer interface, optional Used to fill the array with data. offset : int, optional Offset of array data in buffer. strides : tuple of ints, optional Strides of data in memory. order : {'C', 'F'}, optional Row-major (C-style) or column-major (Fortran-style) order. Attributes ---------- T : ndarray Transpose of the array. data : buffer The array's elements, in memory. dtype : dtype object Describes the format of the elements in the array. flags : dict Dictionary containing information related to memory use, e.g., 'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc. flat : numpy.flatiter object Flattened version of the array as an iterator. The iterator allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for assignment examples; TODO). imag : ndarray Imaginary part of the array. real : ndarray Real part of the array. size : int Number of elements in the array. itemsize : int The memory use of each array element in bytes. nbytes : int The total number of bytes required to store the array data, i.e., ``itemsize * size``. ndim : int The array's number of dimensions. shape : tuple of ints Shape of the array. strides : tuple of ints The step-size required to move from one element to the next in memory. For example, a contiguous ``(3, 4)`` array of type ``int16`` in C-order has strides ``(8, 2)``. This implies that to move from element to element in memory requires jumps of 2 bytes. To move from row-to-row, one needs to jump 8 bytes at a time (``2 * 4``). ctypes : ctypes object Class containing properties of the array needed for interaction with ctypes. base : ndarray If the array is a view into another array, that array is its `base` (unless that array is also a view). The `base` array is where the array data is actually stored. See Also -------- array : Construct an array. zeros : Create an array, each element of which is zero. empty : Create an array, but leave its allocated memory unchanged (i.e., it contains "garbage"). dtype : Create a data-type. Notes ----- There are two modes of creating an array using ``__new__``: 1. If `buffer` is None, then only `shape`, `dtype`, and `order` are used. 2. If `buffer` is an object exposing the buffer interface, then all keywords are interpreted. No ``__init__`` method is needed because the array is fully initialized after the ``__new__`` method. Examples -------- These examples illustrate the low-level `ndarray` constructor. Refer to the `See Also` section above for easier ways of constructing an ndarray. First mode, `buffer` is None: >>> np.ndarray(shape=(2,2), dtype=float, order='F') array([[0.0e+000, 0.0e+000], # random [ nan, 2.5e-323]]) Second mode: >>> np.ndarray((2,), buffer=np.array([1,2,3]), ... offset=np.int_().itemsize, ... dtype=int) # offset = 1*itemsize, i.e. skip first element array([2, 3])
Signature du constructeur | Description |
---|---|
__new__(*args, **kwargs) | Create and return a new object. See help(type) for accurate signature. [extrait de __new__.__doc__] |
Nom de l'attribut | Valeur |
---|---|
base | <attribute 'base' of 'numpy.ndarray' objects> |
ctypes | <attribute 'ctypes' of 'numpy.ndarray' objects> |
data | <attribute 'data' of 'numpy.ndarray' objects> |
dtype | <attribute 'dtype' of 'numpy.ndarray' objects> |
flags | <attribute 'flags' of 'numpy.ndarray' objects> |
flat | <attribute 'flat' of 'numpy.ndarray' objects> |
imag | <attribute 'imag' of 'numpy.ndarray' objects> |
itemsize | <attribute 'itemsize' of 'numpy.ndarray' objects> |
nbytes | <attribute 'nbytes' of 'numpy.ndarray' objects> |
ndim | <attribute 'ndim' of 'numpy.ndarray' objects> |
real | <attribute 'real' of 'numpy.ndarray' objects> |
shape | <attribute 'shape' of 'numpy.ndarray' objects> |
size | <attribute 'size' of 'numpy.ndarray' objects> |
strides | <attribute 'strides' of 'numpy.ndarray' objects> |
T | <attribute 'T' of 'numpy.ndarray' objects> |
Signature de l'opérateur | Description |
---|---|
__add__(self, value) | Return self+value. [extrait de __add__.__doc__] |
__and__(self, value) | Return self&value. [extrait de __and__.__doc__] |
__contains__(self, key) | Return key in self. [extrait de __contains__.__doc__] |
__delitem__(self, key) | Delete self[key]. [extrait de __delitem__.__doc__] |
__eq__(self, value) | Return self==value. [extrait de __eq__.__doc__] |
__floordiv__(self, value) | Return self//value. [extrait de __floordiv__.__doc__] |
__ge__(self, value) | Return self>=value. [extrait de __ge__.__doc__] |
__getitem__(self, key) | Return self[key]. [extrait de __getitem__.__doc__] |
__gt__(self, value) | Return self>value. [extrait de __gt__.__doc__] |
__iadd__(self, value) | Return self+=value. [extrait de __iadd__.__doc__] |
__iand__(self, value) | Return self&=value. [extrait de __iand__.__doc__] |
__ifloordiv__(self, value) | Return self//=value. [extrait de __ifloordiv__.__doc__] |
__ilshift__(self, value) | Return self<<=value. [extrait de __ilshift__.__doc__] |
__imatmul__(self, value) | Return self@=value. [extrait de __imatmul__.__doc__] |
__imod__(self, value) | Return self%=value. [extrait de __imod__.__doc__] |
__imul__(self, value) | Return self*=value. [extrait de __imul__.__doc__] |
__invert__(self) | ~self [extrait de __invert__.__doc__] |
__ior__(self, value) | Return self|=value. [extrait de __ior__.__doc__] |
__ipow__(self, value) | Return self**=value. [extrait de __ipow__.__doc__] |
__irshift__(self, value) | Return self>>=value. [extrait de __irshift__.__doc__] |
__isub__(self, value) | Return self-=value. [extrait de __isub__.__doc__] |
__itruediv__(self, value) | Return self/=value. [extrait de __itruediv__.__doc__] |
__ixor__(self, value) | Return self^=value. [extrait de __ixor__.__doc__] |
__le__(self, value) | Return self<=value. [extrait de __le__.__doc__] |
__lshift__(self, value) | Return self<<value. [extrait de __lshift__.__doc__] |
__lt__(self, value) | Return self<value. [extrait de __lt__.__doc__] |
__matmul__(self, value) | Return self@value. [extrait de __matmul__.__doc__] |
__mod__(self, value) | Return self%value. [extrait de __mod__.__doc__] |
__mul__(self, value) | Return self*value. [extrait de __mul__.__doc__] |
__ne__(self, value) | Return self!=value. [extrait de __ne__.__doc__] |
__neg__(self) | -self [extrait de __neg__.__doc__] |
__or__(self, value) | Return self|value. [extrait de __or__.__doc__] |
__pos__(self) | +self [extrait de __pos__.__doc__] |
__pow__(self, value, mod=None) | Return pow(self, value, mod). [extrait de __pow__.__doc__] |
__radd__(self, value) | Return value+self. [extrait de __radd__.__doc__] |
__rand__(self, value) | Return value&self. [extrait de __rand__.__doc__] |
__rfloordiv__(self, value) | Return value//self. [extrait de __rfloordiv__.__doc__] |
__rlshift__(self, value) | Return value<<self. [extrait de __rlshift__.__doc__] |
__rmod__(self, value) | Return value%self. [extrait de __rmod__.__doc__] |
__rmul__(self, value) | Return value*self. [extrait de __rmul__.__doc__] |
__ror__(self, value) | Return value|self. [extrait de __ror__.__doc__] |
__rpow__(self, value, mod=None) | Return pow(value, self, mod). [extrait de __rpow__.__doc__] |
__rrshift__(self, value) | Return value>>self. [extrait de __rrshift__.__doc__] |
__rshift__(self, value) | Return self>>value. [extrait de __rshift__.__doc__] |
__rsub__(self, value) | Return value-self. [extrait de __rsub__.__doc__] |
__rtruediv__(self, value) | Return value/self. [extrait de __rtruediv__.__doc__] |
__rxor__(self, value) | Return value^self. [extrait de __rxor__.__doc__] |
__setitem__(self, key, value) | Set self[key] to value. [extrait de __setitem__.__doc__] |
__sub__(self, value) | Return self-value. [extrait de __sub__.__doc__] |
__truediv__(self, value) | Return self/value. [extrait de __truediv__.__doc__] |
__xor__(self, value) | Return self^value. [extrait de __xor__.__doc__] |
Signature de la méthode | Description |
---|---|
__abs__(self) | abs(self) [extrait de __abs__.__doc__] |
__array__ | a.__array__([dtype], /) -> reference if type unchanged, copy otherwise. [extrait de __array__.__doc__] |
__array_function__ | |
__array_prepare__ | a.__array_prepare__(obj) -> Object of same type as ndarray object obj. [extrait de __array_prepare__.__doc__] |
__array_ufunc__ | |
__array_wrap__ | a.__array_wrap__(obj) -> Object of same type as ndarray object a. [extrait de __array_wrap__.__doc__] |
__bool__(self) | self != 0 [extrait de __bool__.__doc__] |
__complex__ | |
__copy__ | a.__copy__() [extrait de __copy__.__doc__] |
__deepcopy__ | a.__deepcopy__(memo, /) -> Deep copy of array. [extrait de __deepcopy__.__doc__] |
__divmod__(self, value) | Return divmod(self, value). [extrait de __divmod__.__doc__] |
__float__(self) | float(self) [extrait de __float__.__doc__] |
__format__ | |
__index__(self) | Return self converted to an integer, if self is suitable for use as an index into a list. [extrait de __index__.__doc__] |
__int__(self) | int(self) [extrait de __int__.__doc__] |
__iter__(self) | Implement iter(self). [extrait de __iter__.__doc__] |
__len__(self) | Return len(self). [extrait de __len__.__doc__] |
__rdivmod__(self, value) | Return divmod(value, self). [extrait de __rdivmod__.__doc__] |
__reduce__ | a.__reduce__() [extrait de __reduce__.__doc__] |
__reduce_ex__ | |
__repr__(self) | Return repr(self). [extrait de __repr__.__doc__] |
__rmatmul__(self, value) | Return value@self. [extrait de __rmatmul__.__doc__] |
__setstate__ | a.__setstate__(state, /) [extrait de __setstate__.__doc__] |
__sizeof__ | |
__str__(self) | Return str(self). [extrait de __str__.__doc__] |
all | a.all(axis=None, out=None, keepdims=False, *, where=True) [extrait de all.__doc__] |
any | a.any(axis=None, out=None, keepdims=False, *, where=True) [extrait de any.__doc__] |
argmax | a.argmax(axis=None, out=None) [extrait de argmax.__doc__] |
argmin | a.argmin(axis=None, out=None) [extrait de argmin.__doc__] |
argpartition | a.argpartition(kth, axis=-1, kind='introselect', order=None) [extrait de argpartition.__doc__] |
argsort | a.argsort(axis=-1, kind=None, order=None) [extrait de argsort.__doc__] |
astype | a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) [extrait de astype.__doc__] |
byteswap | a.byteswap(inplace=False) [extrait de byteswap.__doc__] |
choose | a.choose(choices, out=None, mode='raise') [extrait de choose.__doc__] |
clip | a.clip(min=None, max=None, out=None, **kwargs) [extrait de clip.__doc__] |
compress | a.compress(condition, axis=None, out=None) [extrait de compress.__doc__] |
conj | a.conj() [extrait de conj.__doc__] |
conjugate | a.conjugate() [extrait de conjugate.__doc__] |
copy | a.copy(order='C') [extrait de copy.__doc__] |
cumprod | a.cumprod(axis=None, dtype=None, out=None) [extrait de cumprod.__doc__] |
cumsum | a.cumsum(axis=None, dtype=None, out=None) [extrait de cumsum.__doc__] |
diagonal | a.diagonal(offset=0, axis1=0, axis2=1) [extrait de diagonal.__doc__] |
dot | a.dot(b, out=None) [extrait de dot.__doc__] |
dump | a.dump(file) [extrait de dump.__doc__] |
dumps | a.dumps() [extrait de dumps.__doc__] |
fill | a.fill(value) [extrait de fill.__doc__] |
flatten | a.flatten(order='C') [extrait de flatten.__doc__] |
getfield | a.getfield(dtype, offset=0) [extrait de getfield.__doc__] |
item | a.item(*args) [extrait de item.__doc__] |
itemset | a.itemset(*args) [extrait de itemset.__doc__] |
max | a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True) [extrait de max.__doc__] |
mean | a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True) [extrait de mean.__doc__] |
min | a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True) [extrait de min.__doc__] |
newbyteorder | arr.newbyteorder(new_order='S', /) [extrait de newbyteorder.__doc__] |
nonzero | a.nonzero() [extrait de nonzero.__doc__] |
partition | a.partition(kth, axis=-1, kind='introselect', order=None) [extrait de partition.__doc__] |
prod | a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True) [extrait de prod.__doc__] |
ptp | a.ptp(axis=None, out=None, keepdims=False) [extrait de ptp.__doc__] |
put | a.put(indices, values, mode='raise') [extrait de put.__doc__] |
ravel | a.ravel([order]) [extrait de ravel.__doc__] |
repeat | a.repeat(repeats, axis=None) [extrait de repeat.__doc__] |
reshape | a.reshape(shape, order='C') [extrait de reshape.__doc__] |
resize | a.resize(new_shape, refcheck=True) [extrait de resize.__doc__] |
round | a.round(decimals=0, out=None) [extrait de round.__doc__] |
searchsorted | a.searchsorted(v, side='left', sorter=None) [extrait de searchsorted.__doc__] |
setfield | a.setfield(val, dtype, offset=0) [extrait de setfield.__doc__] |
setflags | a.setflags(write=None, align=None, uic=None) [extrait de setflags.__doc__] |
sort | a.sort(axis=-1, kind=None, order=None) [extrait de sort.__doc__] |
squeeze | a.squeeze(axis=None) [extrait de squeeze.__doc__] |
std | a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) [extrait de std.__doc__] |
sum | a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True) [extrait de sum.__doc__] |
swapaxes | a.swapaxes(axis1, axis2) [extrait de swapaxes.__doc__] |
take | a.take(indices, axis=None, out=None, mode='raise') [extrait de take.__doc__] |
tobytes | a.tobytes(order='C') [extrait de tobytes.__doc__] |
tofile | a.tofile(fid, sep="", format="%s") [extrait de tofile.__doc__] |
tolist | a.tolist() [extrait de tolist.__doc__] |
tostring | a.tostring(order='C') [extrait de tostring.__doc__] |
trace | a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) [extrait de trace.__doc__] |
transpose | a.transpose(*axes) [extrait de transpose.__doc__] |
var | a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) [extrait de var.__doc__] |
view | a.view([dtype][, type]) [extrait de view.__doc__] |
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :