Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Classe « ndarray »

Informations générales

Héritage

builtins.object
    ndarray

Définition

class ndarray(builtins.object):

Description [extrait de ndarray.__doc__]

ndarray(shape, dtype=float, buffer=None, offset=0,
            strides=None, order=None)

    An array object represents a multidimensional, homogeneous array
    of fixed-size items.  An associated data-type object describes the
    format of each element in the array (its byte-order, how many bytes it
    occupies in memory, whether it is an integer, a floating point number,
    or something else, etc.)

    Arrays should be constructed using `array`, `zeros` or `empty` (refer
    to the See Also section below).  The parameters given here refer to
    a low-level method (`ndarray(...)`) for instantiating an array.

    For more information, refer to the `numpy` module and examine the
    methods and attributes of an array.

    Parameters
    ----------
    (for the __new__ method; see Notes below)

    shape : tuple of ints
        Shape of created array.
    dtype : data-type, optional
        Any object that can be interpreted as a numpy data type.
    buffer : object exposing buffer interface, optional
        Used to fill the array with data.
    offset : int, optional
        Offset of array data in buffer.
    strides : tuple of ints, optional
        Strides of data in memory.
    order : {'C', 'F'}, optional
        Row-major (C-style) or column-major (Fortran-style) order.

    Attributes
    ----------
    T : ndarray
        Transpose of the array.
    data : buffer
        The array's elements, in memory.
    dtype : dtype object
        Describes the format of the elements in the array.
    flags : dict
        Dictionary containing information related to memory use, e.g.,
        'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
    flat : numpy.flatiter object
        Flattened version of the array as an iterator.  The iterator
        allows assignments, e.g., ``x.flat = 3`` (See `ndarray.flat` for
        assignment examples; TODO).
    imag : ndarray
        Imaginary part of the array.
    real : ndarray
        Real part of the array.
    size : int
        Number of elements in the array.
    itemsize : int
        The memory use of each array element in bytes.
    nbytes : int
        The total number of bytes required to store the array data,
        i.e., ``itemsize * size``.
    ndim : int
        The array's number of dimensions.
    shape : tuple of ints
        Shape of the array.
    strides : tuple of ints
        The step-size required to move from one element to the next in
        memory. For example, a contiguous ``(3, 4)`` array of type
        ``int16`` in C-order has strides ``(8, 2)``.  This implies that
        to move from element to element in memory requires jumps of 2 bytes.
        To move from row-to-row, one needs to jump 8 bytes at a time
        (``2 * 4``).
    ctypes : ctypes object
        Class containing properties of the array needed for interaction
        with ctypes.
    base : ndarray
        If the array is a view into another array, that array is its `base`
        (unless that array is also a view).  The `base` array is where the
        array data is actually stored.

    See Also
    --------
    array : Construct an array.
    zeros : Create an array, each element of which is zero.
    empty : Create an array, but leave its allocated memory unchanged (i.e.,
            it contains "garbage").
    dtype : Create a data-type.

    Notes
    -----
    There are two modes of creating an array using ``__new__``:

    1. If `buffer` is None, then only `shape`, `dtype`, and `order`
       are used.
    2. If `buffer` is an object exposing the buffer interface, then
       all keywords are interpreted.

    No ``__init__`` method is needed because the array is fully initialized
    after the ``__new__`` method.

    Examples
    --------
    These examples illustrate the low-level `ndarray` constructor.  Refer
    to the `See Also` section above for easier ways of constructing an
    ndarray.

    First mode, `buffer` is None:

    >>> np.ndarray(shape=(2,2), dtype=float, order='F')
    array([[0.0e+000, 0.0e+000], # random
           [     nan, 2.5e-323]])

    Second mode:

    >>> np.ndarray((2,), buffer=np.array([1,2,3]),
    ...            offset=np.int_().itemsize,
    ...            dtype=int) # offset = 1*itemsize, i.e. skip first element
    array([2, 3])

Constructeur(s)

Signature du constructeur Description
__new__(*args, **kwargs) Create and return a new object. See help(type) for accurate signature. [extrait de __new__.__doc__]

Liste des attributs statiques

Nom de l'attribut Valeur
base<attribute 'base' of 'numpy.ndarray' objects>
ctypes<attribute 'ctypes' of 'numpy.ndarray' objects>
data<attribute 'data' of 'numpy.ndarray' objects>
dtype<attribute 'dtype' of 'numpy.ndarray' objects>
flags<attribute 'flags' of 'numpy.ndarray' objects>
flat<attribute 'flat' of 'numpy.ndarray' objects>
imag<attribute 'imag' of 'numpy.ndarray' objects>
itemsize<attribute 'itemsize' of 'numpy.ndarray' objects>
nbytes<attribute 'nbytes' of 'numpy.ndarray' objects>
ndim<attribute 'ndim' of 'numpy.ndarray' objects>
real<attribute 'real' of 'numpy.ndarray' objects>
shape<attribute 'shape' of 'numpy.ndarray' objects>
size<attribute 'size' of 'numpy.ndarray' objects>
strides<attribute 'strides' of 'numpy.ndarray' objects>
T<attribute 'T' of 'numpy.ndarray' objects>

Liste des opérateurs

Signature de l'opérateur Description
__add__(self, value) Return self+value. [extrait de __add__.__doc__]
__and__(self, value) Return self&value. [extrait de __and__.__doc__]
__contains__(self, key) Return key in self. [extrait de __contains__.__doc__]
__delitem__(self, key) Delete self[key]. [extrait de __delitem__.__doc__]
__eq__(self, value) Return self==value. [extrait de __eq__.__doc__]
__floordiv__(self, value) Return self//value. [extrait de __floordiv__.__doc__]
__ge__(self, value) Return self>=value. [extrait de __ge__.__doc__]
__getitem__(self, key) Return self[key]. [extrait de __getitem__.__doc__]
__gt__(self, value) Return self>value. [extrait de __gt__.__doc__]
__iadd__(self, value) Return self+=value. [extrait de __iadd__.__doc__]
__iand__(self, value) Return self&=value. [extrait de __iand__.__doc__]
__ifloordiv__(self, value) Return self//=value. [extrait de __ifloordiv__.__doc__]
__ilshift__(self, value) Return self<<=value. [extrait de __ilshift__.__doc__]
__imatmul__(self, value) Return self@=value. [extrait de __imatmul__.__doc__]
__imod__(self, value) Return self%=value. [extrait de __imod__.__doc__]
__imul__(self, value) Return self*=value. [extrait de __imul__.__doc__]
__invert__(self) ~self [extrait de __invert__.__doc__]
__ior__(self, value) Return self|=value. [extrait de __ior__.__doc__]
__ipow__(self, value) Return self**=value. [extrait de __ipow__.__doc__]
__irshift__(self, value) Return self>>=value. [extrait de __irshift__.__doc__]
__isub__(self, value) Return self-=value. [extrait de __isub__.__doc__]
__itruediv__(self, value) Return self/=value. [extrait de __itruediv__.__doc__]
__ixor__(self, value) Return self^=value. [extrait de __ixor__.__doc__]
__le__(self, value) Return self<=value. [extrait de __le__.__doc__]
__lshift__(self, value) Return self<<value. [extrait de __lshift__.__doc__]
__lt__(self, value) Return self<value. [extrait de __lt__.__doc__]
__matmul__(self, value) Return self@value. [extrait de __matmul__.__doc__]
__mod__(self, value) Return self%value. [extrait de __mod__.__doc__]
__mul__(self, value) Return self*value. [extrait de __mul__.__doc__]
__ne__(self, value) Return self!=value. [extrait de __ne__.__doc__]
__neg__(self) -self [extrait de __neg__.__doc__]
__or__(self, value) Return self|value. [extrait de __or__.__doc__]
__pos__(self) +self [extrait de __pos__.__doc__]
__pow__(self, value, mod=None) Return pow(self, value, mod). [extrait de __pow__.__doc__]
__radd__(self, value) Return value+self. [extrait de __radd__.__doc__]
__rand__(self, value) Return value&self. [extrait de __rand__.__doc__]
__rfloordiv__(self, value) Return value//self. [extrait de __rfloordiv__.__doc__]
__rlshift__(self, value) Return value<<self. [extrait de __rlshift__.__doc__]
__rmod__(self, value) Return value%self. [extrait de __rmod__.__doc__]
__rmul__(self, value) Return value*self. [extrait de __rmul__.__doc__]
__ror__(self, value) Return value|self. [extrait de __ror__.__doc__]
__rpow__(self, value, mod=None) Return pow(value, self, mod). [extrait de __rpow__.__doc__]
__rrshift__(self, value) Return value>>self. [extrait de __rrshift__.__doc__]
__rshift__(self, value) Return self>>value. [extrait de __rshift__.__doc__]
__rsub__(self, value) Return value-self. [extrait de __rsub__.__doc__]
__rtruediv__(self, value) Return value/self. [extrait de __rtruediv__.__doc__]
__rxor__(self, value) Return value^self. [extrait de __rxor__.__doc__]
__setitem__(self, key, value) Set self[key] to value. [extrait de __setitem__.__doc__]
__sub__(self, value) Return self-value. [extrait de __sub__.__doc__]
__truediv__(self, value) Return self/value. [extrait de __truediv__.__doc__]
__xor__(self, value) Return self^value. [extrait de __xor__.__doc__]

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__abs__(self) abs(self) [extrait de __abs__.__doc__]
__array__ a.__array__([dtype], /) -> reference if type unchanged, copy otherwise. [extrait de __array__.__doc__]
__array_function__
__array_prepare__ a.__array_prepare__(obj) -> Object of same type as ndarray object obj. [extrait de __array_prepare__.__doc__]
__array_ufunc__
__array_wrap__ a.__array_wrap__(obj) -> Object of same type as ndarray object a. [extrait de __array_wrap__.__doc__]
__bool__(self) self != 0 [extrait de __bool__.__doc__]
__complex__
__copy__ a.__copy__() [extrait de __copy__.__doc__]
__deepcopy__ a.__deepcopy__(memo, /) -> Deep copy of array. [extrait de __deepcopy__.__doc__]
__divmod__(self, value) Return divmod(self, value). [extrait de __divmod__.__doc__]
__float__(self) float(self) [extrait de __float__.__doc__]
__format__
__index__(self) Return self converted to an integer, if self is suitable for use as an index into a list. [extrait de __index__.__doc__]
__int__(self) int(self) [extrait de __int__.__doc__]
__iter__(self) Implement iter(self). [extrait de __iter__.__doc__]
__len__(self) Return len(self). [extrait de __len__.__doc__]
__rdivmod__(self, value) Return divmod(value, self). [extrait de __rdivmod__.__doc__]
__reduce__ a.__reduce__() [extrait de __reduce__.__doc__]
__reduce_ex__
__repr__(self) Return repr(self). [extrait de __repr__.__doc__]
__rmatmul__(self, value) Return value@self. [extrait de __rmatmul__.__doc__]
__setstate__ a.__setstate__(state, /) [extrait de __setstate__.__doc__]
__sizeof__
__str__(self) Return str(self). [extrait de __str__.__doc__]
all a.all(axis=None, out=None, keepdims=False, *, where=True) [extrait de all.__doc__]
any a.any(axis=None, out=None, keepdims=False, *, where=True) [extrait de any.__doc__]
argmax a.argmax(axis=None, out=None) [extrait de argmax.__doc__]
argmin a.argmin(axis=None, out=None) [extrait de argmin.__doc__]
argpartition a.argpartition(kth, axis=-1, kind='introselect', order=None) [extrait de argpartition.__doc__]
argsort a.argsort(axis=-1, kind=None, order=None) [extrait de argsort.__doc__]
astype a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True) [extrait de astype.__doc__]
byteswap a.byteswap(inplace=False) [extrait de byteswap.__doc__]
choose a.choose(choices, out=None, mode='raise') [extrait de choose.__doc__]
clip a.clip(min=None, max=None, out=None, **kwargs) [extrait de clip.__doc__]
compress a.compress(condition, axis=None, out=None) [extrait de compress.__doc__]
conj a.conj() [extrait de conj.__doc__]
conjugate a.conjugate() [extrait de conjugate.__doc__]
copy a.copy(order='C') [extrait de copy.__doc__]
cumprod a.cumprod(axis=None, dtype=None, out=None) [extrait de cumprod.__doc__]
cumsum a.cumsum(axis=None, dtype=None, out=None) [extrait de cumsum.__doc__]
diagonal a.diagonal(offset=0, axis1=0, axis2=1) [extrait de diagonal.__doc__]
dot a.dot(b, out=None) [extrait de dot.__doc__]
dump a.dump(file) [extrait de dump.__doc__]
dumps a.dumps() [extrait de dumps.__doc__]
fill a.fill(value) [extrait de fill.__doc__]
flatten a.flatten(order='C') [extrait de flatten.__doc__]
getfield a.getfield(dtype, offset=0) [extrait de getfield.__doc__]
item a.item(*args) [extrait de item.__doc__]
itemset a.itemset(*args) [extrait de itemset.__doc__]
max a.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True) [extrait de max.__doc__]
mean a.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True) [extrait de mean.__doc__]
min a.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True) [extrait de min.__doc__]
newbyteorder arr.newbyteorder(new_order='S', /) [extrait de newbyteorder.__doc__]
nonzero a.nonzero() [extrait de nonzero.__doc__]
partition a.partition(kth, axis=-1, kind='introselect', order=None) [extrait de partition.__doc__]
prod a.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True) [extrait de prod.__doc__]
ptp a.ptp(axis=None, out=None, keepdims=False) [extrait de ptp.__doc__]
put a.put(indices, values, mode='raise') [extrait de put.__doc__]
ravel a.ravel([order]) [extrait de ravel.__doc__]
repeat a.repeat(repeats, axis=None) [extrait de repeat.__doc__]
reshape a.reshape(shape, order='C') [extrait de reshape.__doc__]
resize a.resize(new_shape, refcheck=True) [extrait de resize.__doc__]
round a.round(decimals=0, out=None) [extrait de round.__doc__]
searchsorted a.searchsorted(v, side='left', sorter=None) [extrait de searchsorted.__doc__]
setfield a.setfield(val, dtype, offset=0) [extrait de setfield.__doc__]
setflags a.setflags(write=None, align=None, uic=None) [extrait de setflags.__doc__]
sort a.sort(axis=-1, kind=None, order=None) [extrait de sort.__doc__]
squeeze a.squeeze(axis=None) [extrait de squeeze.__doc__]
std a.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) [extrait de std.__doc__]
sum a.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True) [extrait de sum.__doc__]
swapaxes a.swapaxes(axis1, axis2) [extrait de swapaxes.__doc__]
take a.take(indices, axis=None, out=None, mode='raise') [extrait de take.__doc__]
tobytes a.tobytes(order='C') [extrait de tobytes.__doc__]
tofile a.tofile(fid, sep="", format="%s") [extrait de tofile.__doc__]
tolist a.tolist() [extrait de tolist.__doc__]
tostring a.tostring(order='C') [extrait de tostring.__doc__]
trace a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None) [extrait de trace.__doc__]
transpose a.transpose(*axes) [extrait de transpose.__doc__]
var a.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True) [extrait de var.__doc__]
view a.view([dtype][, type]) [extrait de view.__doc__]

Méthodes héritées de la classe object

__delattr__, __dir__, __getattribute__, __hash__, __init_subclass__, __setattr__, __subclasshook__