Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction delete - module numpy

Signature de la fonction delete

def delete(arr, obj, axis=None) 

Description

delete.__doc__

    Return a new array with sub-arrays along an axis deleted. For a one
    dimensional array, this returns those entries not returned by
    `arr[obj]`.

    Parameters
    ----------
    arr : array_like
        Input array.
    obj : slice, int or array of ints
        Indicate indices of sub-arrays to remove along the specified axis.

        .. versionchanged:: 1.19.0
            Boolean indices are now treated as a mask of elements to remove,
            rather than being cast to the integers 0 and 1.

    axis : int, optional
        The axis along which to delete the subarray defined by `obj`.
        If `axis` is None, `obj` is applied to the flattened array.

    Returns
    -------
    out : ndarray
        A copy of `arr` with the elements specified by `obj` removed. Note
        that `delete` does not occur in-place. If `axis` is None, `out` is
        a flattened array.

    See Also
    --------
    insert : Insert elements into an array.
    append : Append elements at the end of an array.

    Notes
    -----
    Often it is preferable to use a boolean mask. For example:

    >>> arr = np.arange(12) + 1
    >>> mask = np.ones(len(arr), dtype=bool)
    >>> mask[[0,2,4]] = False
    >>> result = arr[mask,...]

    Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further
    use of `mask`.

    Examples
    --------
    >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    >>> arr
    array([[ 1,  2,  3,  4],
           [ 5,  6,  7,  8],
           [ 9, 10, 11, 12]])
    >>> np.delete(arr, 1, 0)
    array([[ 1,  2,  3,  4],
           [ 9, 10, 11, 12]])

    >>> np.delete(arr, np.s_[::2], 1)
    array([[ 2,  4],
           [ 6,  8],
           [10, 12]])
    >>> np.delete(arr, [1,3,5], None)
    array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])