Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction bincount - module numpy

Signature de la fonction bincount

Description

bincount.__doc__

    bincount(x, weights=None, minlength=0)

    Count number of occurrences of each value in array of non-negative ints.

    The number of bins (of size 1) is one larger than the largest value in
    `x`. If `minlength` is specified, there will be at least this number
    of bins in the output array (though it will be longer if necessary,
    depending on the contents of `x`).
    Each bin gives the number of occurrences of its index value in `x`.
    If `weights` is specified the input array is weighted by it, i.e. if a
    value ``n`` is found at position ``i``, ``out[n] += weight[i]`` instead
    of ``out[n] += 1``.

    Parameters
    ----------
    x : array_like, 1 dimension, nonnegative ints
        Input array.
    weights : array_like, optional
        Weights, array of the same shape as `x`.
    minlength : int, optional
        A minimum number of bins for the output array.

        .. versionadded:: 1.6.0

    Returns
    -------
    out : ndarray of ints
        The result of binning the input array.
        The length of `out` is equal to ``np.amax(x)+1``.

    Raises
    ------
    ValueError
        If the input is not 1-dimensional, or contains elements with negative
        values, or if `minlength` is negative.
    TypeError
        If the type of the input is float or complex.

    See Also
    --------
    histogram, digitize, unique

    Examples
    --------
    >>> np.bincount(np.arange(5))
    array([1, 1, 1, 1, 1])
    >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
    array([1, 3, 1, 1, 0, 0, 0, 1])

    >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
    >>> np.bincount(x).size == np.amax(x)+1
    True

    The input array needs to be of integer dtype, otherwise a
    TypeError is raised:

    >>> np.bincount(np.arange(5, dtype=float))
    Traceback (most recent call last):
      ...
    TypeError: Cannot cast array data from dtype('float64') to dtype('int64')
    according to the rule 'safe'

    A possible use of ``bincount`` is to perform sums over
    variable-size chunks of an array, using the ``weights`` keyword.

    >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
    >>> x = np.array([0, 1, 1, 2, 2, 2])
    >>> np.bincount(x,  weights=w)
    array([ 0.3,  0.7,  1.1])