Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction logical_xor - module numpy

Signature de la fonction logical_xor

Description

logical_xor.__doc__

logical_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Compute the truth value of x1 XOR x2, element-wise.

Parameters
----------
x1, x2 : array_like
    Logical XOR is applied to the elements of `x1` and `x2`.
    If ``x1.shape != x2.shape``, they must be broadcastable to a common
    shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
    A location into which the result is stored. If provided, it must have
    a shape that the inputs broadcast to. If not provided or None,
    a freshly-allocated array is returned. A tuple (possible only as a
    keyword argument) must have length equal to the number of outputs.
where : array_like, optional
    This condition is broadcast over the input. At locations where the
    condition is True, the `out` array will be set to the ufunc result.
    Elsewhere, the `out` array will retain its original value.
    Note that if an uninitialized `out` array is created via the default
    ``out=None``, locations within it where the condition is False will
    remain uninitialized.
**kwargs
    For other keyword-only arguments, see the
    :ref:`ufunc docs <ufuncs.kwargs>`.

Returns
-------
y : bool or ndarray of bool
    Boolean result of the logical XOR operation applied to the elements
    of `x1` and `x2`; the shape is determined by broadcasting.
    This is a scalar if both `x1` and `x2` are scalars.

See Also
--------
logical_and, logical_or, logical_not, bitwise_xor

Examples
--------
>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
array([False,  True,  True, False])

>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
array([ True, False, False, False,  True])

Simple example showing support of broadcasting

>>> np.logical_xor(0, np.eye(2))
array([[ True, False],
       [False,  True]])