Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction einsum_path - module numpy

Signature de la fonction einsum_path

def einsum_path(*operands, optimize='greedy', einsum_call=False) 

Description

einsum_path.__doc__

    einsum_path(subscripts, *operands, optimize='greedy')

    Evaluates the lowest cost contraction order for an einsum expression by
    considering the creation of intermediate arrays.

    Parameters
    ----------
    subscripts : str
        Specifies the subscripts for summation.
    *operands : list of array_like
        These are the arrays for the operation.
    optimize : {bool, list, tuple, 'greedy', 'optimal'}
        Choose the type of path. If a tuple is provided, the second argument is
        assumed to be the maximum intermediate size created. If only a single
        argument is provided the largest input or output array size is used
        as a maximum intermediate size.

        * if a list is given that starts with ``einsum_path``, uses this as the
          contraction path
        * if False no optimization is taken
        * if True defaults to the 'greedy' algorithm
        * 'optimal' An algorithm that combinatorially explores all possible
          ways of contracting the listed tensors and choosest the least costly
          path. Scales exponentially with the number of terms in the
          contraction.
        * 'greedy' An algorithm that chooses the best pair contraction
          at each step. Effectively, this algorithm searches the largest inner,
          Hadamard, and then outer products at each step. Scales cubically with
          the number of terms in the contraction. Equivalent to the 'optimal'
          path for most contractions.

        Default is 'greedy'.

    Returns
    -------
    path : list of tuples
        A list representation of the einsum path.
    string_repr : str
        A printable representation of the einsum path.

    Notes
    -----
    The resulting path indicates which terms of the input contraction should be
    contracted first, the result of this contraction is then appended to the
    end of the contraction list. This list can then be iterated over until all
    intermediate contractions are complete.

    See Also
    --------
    einsum, linalg.multi_dot

    Examples
    --------

    We can begin with a chain dot example. In this case, it is optimal to
    contract the ``b`` and ``c`` tensors first as represented by the first
    element of the path ``(1, 2)``. The resulting tensor is added to the end
    of the contraction and the remaining contraction ``(0, 1)`` is then
    completed.

    >>> np.random.seed(123)
    >>> a = np.random.rand(2, 2)
    >>> b = np.random.rand(2, 5)
    >>> c = np.random.rand(5, 2)
    >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
    >>> print(path_info[0])
    ['einsum_path', (1, 2), (0, 1)]
    >>> print(path_info[1])
      Complete contraction:  ij,jk,kl->il # may vary
             Naive scaling:  4
         Optimized scaling:  3
          Naive FLOP count:  1.600e+02
      Optimized FLOP count:  5.600e+01
       Theoretical speedup:  2.857
      Largest intermediate:  4.000e+00 elements
    -------------------------------------------------------------------------
    scaling                  current                                remaining
    -------------------------------------------------------------------------
       3                   kl,jk->jl                                ij,jl->il
       3                   jl,ij->il                                   il->il


    A more complex index transformation example.

    >>> I = np.random.rand(10, 10, 10, 10)
    >>> C = np.random.rand(10, 10)
    >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
    ...                            optimize='greedy')

    >>> print(path_info[0])
    ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
    >>> print(path_info[1]) 
      Complete contraction:  ea,fb,abcd,gc,hd->efgh # may vary
             Naive scaling:  8
         Optimized scaling:  5
          Naive FLOP count:  8.000e+08
      Optimized FLOP count:  8.000e+05
       Theoretical speedup:  1000.000
      Largest intermediate:  1.000e+04 elements
    --------------------------------------------------------------------------
    scaling                  current                                remaining
    --------------------------------------------------------------------------
       5               abcd,ea->bcde                      fb,gc,hd,bcde->efgh
       5               bcde,fb->cdef                         gc,hd,cdef->efgh
       5               cdef,gc->defg                            hd,defg->efgh
       5               defg,hd->efgh                               efgh->efgh