Module « numpy »
Signature de la fonction fmod
Description
fmod.__doc__
fmod(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Return the element-wise remainder of division.
This is the NumPy implementation of the C library function fmod, the
remainder has the same sign as the dividend `x1`. It is equivalent to
the Matlab(TM) ``rem`` function and should not be confused with the
Python modulus operator ``x1 % x2``.
Parameters
----------
x1 : array_like
Dividend.
x2 : array_like
Divisor.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
y : array_like
The remainder of the division of `x1` by `x2`.
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
remainder : Equivalent to the Python ``%`` operator.
divide
Notes
-----
The result of the modulo operation for negative dividend and divisors
is bound by conventions. For `fmod`, the sign of result is the sign of
the dividend, while for `remainder` the sign of the result is the sign
of the divisor. The `fmod` function is equivalent to the Matlab(TM)
``rem`` function.
Examples
--------
>>> np.fmod([-3, -2, -1, 1, 2, 3], 2)
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2)
array([1, 0, 1, 1, 0, 1])
>>> np.fmod([5, 3], [2, 2.])
array([ 1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2)
>>> a
array([[-3, -2],
[-1, 0],
[ 1, 2]])
>>> np.fmod(a, [2,2])
array([[-1, 0],
[-1, 0],
[ 1, 0]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :