Vous êtes un professionnel et vous avez besoin d'une formation ?
Programmation Python
Les compléments
Voir le programme détaillé
Module « numpy »
Signature de la fonction percentile
def percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, weights=None, interpolation=None)
Description
help(numpy.percentile)
Compute the q-th percentile of the data along the specified axis.
Returns the q-th percentile(s) of the array elements.
Parameters
----------
a : array_like of real numbers
Input array or object that can be converted to an array.
q : array_like of float
Percentage or sequence of percentages for the percentiles to compute.
Values must be between 0 and 100 inclusive.
axis : {int, tuple of int, None}, optional
Axis or axes along which the percentiles are computed. The
default is to compute the percentile(s) along a flattened
version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow the input array `a` to be modified by intermediate
calculations, to save memory. In this case, the contents of the input
`a` after this function completes is undefined.
method : str, optional
This parameter specifies the method to use for estimating the
percentile. There are many different methods, some unique to NumPy.
See the notes for explanation. The options sorted by their R type
as summarized in the H&F paper [1]_ are:
1. 'inverted_cdf'
2. 'averaged_inverted_cdf'
3. 'closest_observation'
4. 'interpolated_inverted_cdf'
5. 'hazen'
6. 'weibull'
7. 'linear' (default)
8. 'median_unbiased'
9. 'normal_unbiased'
The first three methods are discontinuous. NumPy further defines the
following discontinuous variations of the default 'linear' (7.) option:
* 'lower'
* 'higher',
* 'midpoint'
* 'nearest'
.. versionchanged:: 1.22.0
This argument was previously called "interpolation" and only
offered the "linear" default and last four options.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the
result will broadcast correctly against the original array `a`.
weights : array_like, optional
An array of weights associated with the values in `a`. Each value in
`a` contributes to the percentile according to its associated weight.
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given axis) or of the same shape as `a`.
If `weights=None`, then all data in `a` are assumed to have a
weight equal to one.
Only `method="inverted_cdf"` supports weights.
See the notes for more details.
.. versionadded:: 2.0.0
interpolation : str, optional
Deprecated name for the method keyword argument.
.. deprecated:: 1.22.0
Returns
-------
percentile : scalar or ndarray
If `q` is a single percentile and `axis=None`, then the result
is a scalar. If multiple percentiles are given, first axis of
the result corresponds to the percentiles. The other axes are
the axes that remain after the reduction of `a`. If the input
contains integers or floats smaller than ``float64``, the output
data-type is ``float64``. Otherwise, the output data-type is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
mean
median : equivalent to ``percentile(..., 50)``
nanpercentile
quantile : equivalent to percentile, except q in the range [0, 1].
Notes
-----
The behavior of `numpy.percentile` with percentage `q` is
that of `numpy.quantile` with argument ``q/100``.
For more information, please see `numpy.quantile`.
Examples
--------
>>> import numpy as np
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.percentile(a, 50)
3.5
>>> np.percentile(a, 50, axis=0)
array([6.5, 4.5, 2.5])
>>> np.percentile(a, 50, axis=1)
array([7., 2.])
>>> np.percentile(a, 50, axis=1, keepdims=True)
array([[7.],
[2.]])
>>> m = np.percentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.percentile(a, 50, axis=0, out=out)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.percentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a == b)
The different methods can be visualized graphically:
.. plot::
import matplotlib.pyplot as plt
a = np.arange(4)
p = np.linspace(0, 100, 6001)
ax = plt.gca()
lines = [
('linear', '-', 'C0'),
('inverted_cdf', ':', 'C1'),
# Almost the same as `inverted_cdf`:
('averaged_inverted_cdf', '-.', 'C1'),
('closest_observation', ':', 'C2'),
('interpolated_inverted_cdf', '--', 'C1'),
('hazen', '--', 'C3'),
('weibull', '-.', 'C4'),
('median_unbiased', '--', 'C5'),
('normal_unbiased', '-.', 'C6'),
]
for method, style, color in lines:
ax.plot(
p, np.percentile(a, p, method=method),
label=method, linestyle=style, color=color)
ax.set(
title='Percentiles for different methods and data: ' + str(a),
xlabel='Percentile',
ylabel='Estimated percentile value',
yticks=a)
ax.legend(bbox_to_anchor=(1.03, 1))
plt.tight_layout()
plt.show()
References
----------
.. [1] R. J. Hyndman and Y. Fan,
"Sample quantiles in statistical packages,"
The American Statistician, 50(4), pp. 361-365, 1996
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :