Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « numpy »

Fonction busday_offset - module numpy

Signature de la fonction busday_offset

Description

help(numpy.busday_offset)

busday_offset(
    dates,
    offsets,
    roll='raise',
    weekmask='1111100',
    holidays=None,
    busdaycal=None,
    out=None
)

First adjusts the date to fall on a valid day according to
the ``roll`` rule, then applies offsets to the given dates
counted in valid days.

Parameters
----------
dates : array_like of datetime64[D]
    The array of dates to process.
offsets : array_like of int
    The array of offsets, which is broadcast with ``dates``.
roll : {'raise', 'nat', 'forward', 'following', 'backward', 'preceding',         'modifiedfollowing', 'modifiedpreceding'}, optional
    How to treat dates that do not fall on a valid day. The default
    is 'raise'.

    * 'raise' means to raise an exception for an invalid day.
    * 'nat' means to return a NaT (not-a-time) for an invalid day.
    * 'forward' and 'following' mean to take the first valid day
      later in time.
    * 'backward' and 'preceding' mean to take the first valid day
      earlier in time.
    * 'modifiedfollowing' means to take the first valid day
      later in time unless it is across a Month boundary, in which
      case to take the first valid day earlier in time.
    * 'modifiedpreceding' means to take the first valid day
      earlier in time unless it is across a Month boundary, in which
      case to take the first valid day later in time.
weekmask : str or array_like of bool, optional
    A seven-element array indicating which of Monday through Sunday are
    valid days. May be specified as a length-seven list or array, like
    [1,1,1,1,1,0,0]; a length-seven string, like '1111100'; or a string
    like "Mon Tue Wed Thu Fri", made up of 3-character abbreviations for
    weekdays, optionally separated by white space. Valid abbreviations
    are: Mon Tue Wed Thu Fri Sat Sun
holidays : array_like of datetime64[D], optional
    An array of dates to consider as invalid dates.  They may be
    specified in any order, and NaT (not-a-time) dates are ignored.
    This list is saved in a normalized form that is suited for
    fast calculations of valid days.
busdaycal : busdaycalendar, optional
    A `busdaycalendar` object which specifies the valid days. If this
    parameter is provided, neither weekmask nor holidays may be
    provided.
out : array of datetime64[D], optional
    If provided, this array is filled with the result.

Returns
-------
out : array of datetime64[D]
    An array with a shape from broadcasting ``dates`` and ``offsets``
    together, containing the dates with offsets applied.

See Also
--------
busdaycalendar : An object that specifies a custom set of valid days.
is_busday : Returns a boolean array indicating valid days.
busday_count : Counts how many valid days are in a half-open date range.

Examples
--------
>>> import numpy as np
>>> # First business day in October 2011 (not accounting for holidays)
... np.busday_offset('2011-10', 0, roll='forward')
np.datetime64('2011-10-03')
>>> # Last business day in February 2012 (not accounting for holidays)
... np.busday_offset('2012-03', -1, roll='forward')
np.datetime64('2012-02-29')
>>> # Third Wednesday in January 2011
... np.busday_offset('2011-01', 2, roll='forward', weekmask='Wed')
np.datetime64('2011-01-19')
>>> # 2012 Mother's Day in Canada and the U.S.
... np.busday_offset('2012-05', 1, roll='forward', weekmask='Sun')
np.datetime64('2012-05-13')

>>> # First business day on or after a date
... np.busday_offset('2011-03-20', 0, roll='forward')
np.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 0, roll='forward')
np.datetime64('2011-03-22')
>>> # First business day after a date
... np.busday_offset('2011-03-20', 1, roll='backward')
np.datetime64('2011-03-21')
>>> np.busday_offset('2011-03-22', 1, roll='backward')
np.datetime64('2011-03-23')


Vous êtes un professionnel et vous avez besoin d'une formation ? Deep Learning avec Python
et Keras et Tensorflow
Voir le programme détaillé