Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « numpy »

Fonction mask_indices - module numpy

Signature de la fonction mask_indices

def mask_indices(n, mask_func, k=0) 

Description

help(numpy.mask_indices)

Return the indices to access (n, n) arrays, given a masking function.

Assume `mask_func` is a function that, for a square array a of size
``(n, n)`` with a possible offset argument `k`, when called as
``mask_func(a, k)`` returns a new array with zeros in certain locations
(functions like `triu` or `tril` do precisely this). Then this function
returns the indices where the non-zero values would be located.

Parameters
----------
n : int
    The returned indices will be valid to access arrays of shape (n, n).
mask_func : callable
    A function whose call signature is similar to that of `triu`, `tril`.
    That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`.
    `k` is an optional argument to the function.
k : scalar
    An optional argument which is passed through to `mask_func`. Functions
    like `triu`, `tril` take a second argument that is interpreted as an
    offset.

Returns
-------
indices : tuple of arrays.
    The `n` arrays of indices corresponding to the locations where
    ``mask_func(np.ones((n, n)), k)`` is True.

See Also
--------
triu, tril, triu_indices, tril_indices

Examples
--------
>>> import numpy as np

These are the indices that would allow you to access the upper triangular
part of any 3x3 array:

>>> iu = np.mask_indices(3, np.triu)

For example, if `a` is a 3x3 array:

>>> a = np.arange(9).reshape(3, 3)
>>> a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
>>> a[iu]
array([0, 1, 2, 4, 5, 8])

An offset can be passed also to the masking function.  This gets us the
indices starting on the first diagonal right of the main one:

>>> iu1 = np.mask_indices(3, np.triu, 1)

with which we now extract only three elements:

>>> a[iu1]
array([1, 2, 5])



Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé