Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction empty - module numpy

Signature de la fonction empty

Description

empty.__doc__

empty(shape, dtype=float, order='C', *, like=None)

    Return a new array of given shape and type, without initializing entries.

    Parameters
    ----------
    shape : int or tuple of int
        Shape of the empty array, e.g., ``(2, 3)`` or ``2``.
    dtype : data-type, optional
        Desired output data-type for the array, e.g, `numpy.int8`. Default is
        `numpy.float64`.
    order : {'C', 'F'}, optional, default: 'C'
        Whether to store multi-dimensional data in row-major
        (C-style) or column-major (Fortran-style) order in
        memory.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.

        .. note::
            The ``like`` keyword is an experimental feature pending on
            acceptance of :ref:`NEP 35 <NEP35>`.

        .. versionadded:: 1.20.0

    Returns
    -------
    out : ndarray
        Array of uninitialized (arbitrary) data of the given shape, dtype, and
        order.  Object arrays will be initialized to None.

    See Also
    --------
    empty_like : Return an empty array with shape and type of input.
    ones : Return a new array setting values to one.
    zeros : Return a new array setting values to zero.
    full : Return a new array of given shape filled with value.


    Notes
    -----
    `empty`, unlike `zeros`, does not set the array values to zero,
    and may therefore be marginally faster.  On the other hand, it requires
    the user to manually set all the values in the array, and should be
    used with caution.

    Examples
    --------
    >>> np.empty([2, 2])
    array([[ -9.74499359e+001,   6.69583040e-309],
           [  2.13182611e-314,   3.06959433e-309]])         #uninitialized

    >>> np.empty([2, 2], dtype=int)
    array([[-1073741821, -1067949133],
           [  496041986,    19249760]])                     #uninitialized