Module « numpy »
Fonction nanpercentile - module numpy
Signature de la fonction nanpercentile
def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=<no value>)
Description
nanpercentile.__doc__
Compute the qth percentile of the data along the specified axis,
while ignoring nan values.
Returns the qth percentile(s) of the array elements.
.. versionadded:: 1.9.0
Parameters
----------
a : array_like
Input array or object that can be converted to an array, containing
nan values to be ignored.
q : array_like of float
Percentile or sequence of percentiles to compute, which must be between
0 and 100 inclusive.
axis : {int, tuple of int, None}, optional
Axis or axes along which the percentiles are computed. The
default is to compute the percentile(s) along a flattened
version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow the input array `a` to be modified by intermediate
calculations, to save memory. In this case, the contents of the input
`a` after this function completes is undefined.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to
use when the desired percentile lies between two data points
``i < j``:
* 'linear': ``i + (j - i) * fraction``, where ``fraction``
is the fractional part of the index surrounded by ``i``
and ``j``.
* 'lower': ``i``.
* 'higher': ``j``.
* 'nearest': ``i`` or ``j``, whichever is nearest.
* 'midpoint': ``(i + j) / 2``.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the
result will broadcast correctly against the original array `a`.
If this is anything but the default value it will be passed
through (in the special case of an empty array) to the
`mean` function of the underlying array. If the array is
a sub-class and `mean` does not have the kwarg `keepdims` this
will raise a RuntimeError.
Returns
-------
percentile : scalar or ndarray
If `q` is a single percentile and `axis=None`, then the result
is a scalar. If multiple percentiles are given, first axis of
the result corresponds to the percentiles. The other axes are
the axes that remain after the reduction of `a`. If the input
contains integers or floats smaller than ``float64``, the output
data-type is ``float64``. Otherwise, the output data-type is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
nanmean
nanmedian : equivalent to ``nanpercentile(..., 50)``
percentile, median, mean
nanquantile : equivalent to nanpercentile, but with q in the range [0, 1].
Notes
-----
Given a vector ``V`` of length ``N``, the ``q``-th percentile of
``V`` is the value ``q/100`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
will determine the percentile if the normalized ranking does not
match the location of ``q`` exactly. This function is the same as
the median if ``q=50``, the same as the minimum if ``q=0`` and the
same as the maximum if ``q=100``.
Examples
--------
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[10., nan, 4.],
[ 3., 2., 1.]])
>>> np.percentile(a, 50)
nan
>>> np.nanpercentile(a, 50)
3.0
>>> np.nanpercentile(a, 50, axis=0)
array([6.5, 2. , 2.5])
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
array([[7.],
[2.]])
>>> m = np.nanpercentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanpercentile(a, 50, axis=0, out=out)
array([6.5, 2. , 2.5])
>>> m
array([6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :