Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction nanpercentile - module numpy

Signature de la fonction nanpercentile

def nanpercentile(a, q, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=<no value>) 

Description

nanpercentile.__doc__

    Compute the qth percentile of the data along the specified axis,
    while ignoring nan values.

    Returns the qth percentile(s) of the array elements.

    .. versionadded:: 1.9.0

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array, containing
        nan values to be ignored.
    q : array_like of float
        Percentile or sequence of percentiles to compute, which must be between
        0 and 100 inclusive.
    axis : {int, tuple of int, None}, optional
        Axis or axes along which the percentiles are computed. The
        default is to compute the percentile(s) along a flattened
        version of the array.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
        If True, then allow the input array `a` to be modified by intermediate
        calculations, to save memory. In this case, the contents of the input
        `a` after this function completes is undefined.
    interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
        This optional parameter specifies the interpolation method to
        use when the desired percentile lies between two data points
        ``i < j``:

        * 'linear': ``i + (j - i) * fraction``, where ``fraction``
          is the fractional part of the index surrounded by ``i``
          and ``j``.
        * 'lower': ``i``.
        * 'higher': ``j``.
        * 'nearest': ``i`` or ``j``, whichever is nearest.
        * 'midpoint': ``(i + j) / 2``.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left in
        the result as dimensions with size one. With this option, the
        result will broadcast correctly against the original array `a`.

        If this is anything but the default value it will be passed
        through (in the special case of an empty array) to the
        `mean` function of the underlying array.  If the array is
        a sub-class and `mean` does not have the kwarg `keepdims` this
        will raise a RuntimeError.

    Returns
    -------
    percentile : scalar or ndarray
        If `q` is a single percentile and `axis=None`, then the result
        is a scalar. If multiple percentiles are given, first axis of
        the result corresponds to the percentiles. The other axes are
        the axes that remain after the reduction of `a`. If the input
        contains integers or floats smaller than ``float64``, the output
        data-type is ``float64``. Otherwise, the output data-type is the
        same as that of the input. If `out` is specified, that array is
        returned instead.

    See Also
    --------
    nanmean
    nanmedian : equivalent to ``nanpercentile(..., 50)``
    percentile, median, mean
    nanquantile : equivalent to nanpercentile, but with q in the range [0, 1].

    Notes
    -----
    Given a vector ``V`` of length ``N``, the ``q``-th percentile of
    ``V`` is the value ``q/100`` of the way from the minimum to the
    maximum in a sorted copy of ``V``. The values and distances of
    the two nearest neighbors as well as the `interpolation` parameter
    will determine the percentile if the normalized ranking does not
    match the location of ``q`` exactly. This function is the same as
    the median if ``q=50``, the same as the minimum if ``q=0`` and the
    same as the maximum if ``q=100``.

    Examples
    --------
    >>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
    >>> a[0][1] = np.nan
    >>> a
    array([[10.,  nan,   4.],
          [ 3.,   2.,   1.]])
    >>> np.percentile(a, 50)
    nan
    >>> np.nanpercentile(a, 50)
    3.0
    >>> np.nanpercentile(a, 50, axis=0)
    array([6.5, 2. , 2.5])
    >>> np.nanpercentile(a, 50, axis=1, keepdims=True)
    array([[7.],
           [2.]])
    >>> m = np.nanpercentile(a, 50, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.nanpercentile(a, 50, axis=0, out=out)
    array([6.5, 2. , 2.5])
    >>> m
    array([6.5,  2. ,  2.5])

    >>> b = a.copy()
    >>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
    array([7., 2.])
    >>> assert not np.all(a==b)