Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction floor - module numpy

Signature de la fonction floor

Description

floor.__doc__

floor(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Return the floor of the input, element-wise.

The floor of the scalar `x` is the largest integer `i`, such that
`i <= x`.  It is often denoted as :math:`\lfloor x \rfloor`.

Parameters
----------
x : array_like
    Input data.
out : ndarray, None, or tuple of ndarray and None, optional
    A location into which the result is stored. If provided, it must have
    a shape that the inputs broadcast to. If not provided or None,
    a freshly-allocated array is returned. A tuple (possible only as a
    keyword argument) must have length equal to the number of outputs.
where : array_like, optional
    This condition is broadcast over the input. At locations where the
    condition is True, the `out` array will be set to the ufunc result.
    Elsewhere, the `out` array will retain its original value.
    Note that if an uninitialized `out` array is created via the default
    ``out=None``, locations within it where the condition is False will
    remain uninitialized.
**kwargs
    For other keyword-only arguments, see the
    :ref:`ufunc docs <ufuncs.kwargs>`.

Returns
-------
y : ndarray or scalar
    The floor of each element in `x`.
    This is a scalar if `x` is a scalar.

See Also
--------
ceil, trunc, rint

Notes
-----
Some spreadsheet programs calculate the "floor-towards-zero", in other
words ``floor(-2.5) == -2``.  NumPy instead uses the definition of
`floor` where `floor(-2.5) == -3`.

Examples
--------
>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> np.floor(a)
array([-2., -2., -1.,  0.,  1.,  1.,  2.])