Module « numpy »
Signature de la fonction bitwise_xor
Description
bitwise_xor.__doc__
bitwise_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Compute the bit-wise XOR of two arrays element-wise.
Computes the bit-wise XOR of the underlying binary representation of
the integers in the input arrays. This ufunc implements the C/Python
operator ``^``.
Parameters
----------
x1, x2 : array_like
Only integer and boolean types are handled.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
out : ndarray or scalar
Result.
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
logical_xor
bitwise_and
bitwise_or
binary_repr :
Return the binary representation of the input number as a string.
Examples
--------
The number 13 is represented by ``00001101``. Likewise, 17 is
represented by ``00010001``. The bit-wise XOR of 13 and 17 is
therefore ``00011100``, or 28:
>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'
>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26, 6])
>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
array([ True, False])
The ``^`` operator can be used as a shorthand for ``np.bitwise_xor`` on
ndarrays.
>>> x1 = np.array([True, True])
>>> x2 = np.array([False, True])
>>> x1 ^ x2
array([ True, False])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :