Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé
Module « numpy »

Fonction promote_types - module numpy

Signature de la fonction promote_types

Description

help(numpy.promote_types)

promote_types(type1, type2)

    Returns the data type with the smallest size and smallest scalar
    kind to which both ``type1`` and ``type2`` may be safely cast.
    The returned data type is always considered "canonical", this mainly
    means that the promoted dtype will always be in native byte order.

    This function is symmetric, but rarely associative.

    Parameters
    ----------
    type1 : dtype or dtype specifier
        First data type.
    type2 : dtype or dtype specifier
        Second data type.

    Returns
    -------
    out : dtype
        The promoted data type.

    Notes
    -----
    Please see `numpy.result_type` for additional information about promotion.

    Starting in NumPy 1.9, promote_types function now returns a valid string
    length when given an integer or float dtype as one argument and a string
    dtype as another argument. Previously it always returned the input string
    dtype, even if it wasn't long enough to store the max integer/float value
    converted to a string.

    .. versionchanged:: 1.23.0

    NumPy now supports promotion for more structured dtypes.  It will now
    remove unnecessary padding from a structure dtype and promote included
    fields individually.

    See Also
    --------
    result_type, dtype, can_cast

    Examples
    --------
    >>> import numpy as np
    >>> np.promote_types('f4', 'f8')
    dtype('float64')

    >>> np.promote_types('i8', 'f4')
    dtype('float64')

    >>> np.promote_types('>i8', '<c8')
    dtype('complex128')

    >>> np.promote_types('i4', 'S8')
    dtype('S11')

    An example of a non-associative case:

    >>> p = np.promote_types
    >>> p('S', p('i1', 'u1'))
    dtype('S6')
    >>> p(p('S', 'i1'), 'u1')
    dtype('S4')


Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé