Module « numpy »
Signature de la fonction float_power
Description
float_power.__doc__
float_power(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
First array elements raised to powers from second array, element-wise.
Raise each base in `x1` to the positionally-corresponding power in `x2`.
`x1` and `x2` must be broadcastable to the same shape. This differs from
the power function in that integers, float16, and float32 are promoted to
floats with a minimum precision of float64 so that the result is always
inexact. The intent is that the function will return a usable result for
negative powers and seldom overflow for positive powers.
.. versionadded:: 1.12.0
Parameters
----------
x1 : array_like
The bases.
x2 : array_like
The exponents.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
y : ndarray
The bases in `x1` raised to the exponents in `x2`.
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
power : power function that preserves type
Examples
--------
Cube each element in a list.
>>> x1 = range(6)
>>> x1
[0, 1, 2, 3, 4, 5]
>>> np.float_power(x1, 3)
array([ 0., 1., 8., 27., 64., 125.])
Raise the bases to different exponents.
>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0]
>>> np.float_power(x1, x2)
array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
>>> x2
array([[1, 2, 3, 3, 2, 1],
[1, 2, 3, 3, 2, 1]])
>>> np.float_power(x1, x2)
array([[ 0., 1., 8., 27., 16., 5.],
[ 0., 1., 8., 27., 16., 5.]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :