Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction zeros - module numpy

Signature de la fonction zeros

Description

zeros.__doc__

zeros(shape, dtype=float, order='C', *, like=None)

    Return a new array of given shape and type, filled with zeros.

    Parameters
    ----------
    shape : int or tuple of ints
        Shape of the new array, e.g., ``(2, 3)`` or ``2``.
    dtype : data-type, optional
        The desired data-type for the array, e.g., `numpy.int8`.  Default is
        `numpy.float64`.
    order : {'C', 'F'}, optional, default: 'C'
        Whether to store multi-dimensional data in row-major
        (C-style) or column-major (Fortran-style) order in
        memory.
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.

        .. note::
            The ``like`` keyword is an experimental feature pending on
            acceptance of :ref:`NEP 35 <NEP35>`.

        .. versionadded:: 1.20.0

    Returns
    -------
    out : ndarray
        Array of zeros with the given shape, dtype, and order.

    See Also
    --------
    zeros_like : Return an array of zeros with shape and type of input.
    empty : Return a new uninitialized array.
    ones : Return a new array setting values to one.
    full : Return a new array of given shape filled with value.

    Examples
    --------
    >>> np.zeros(5)
    array([ 0.,  0.,  0.,  0.,  0.])

    >>> np.zeros((5,), dtype=int)
    array([0, 0, 0, 0, 0])

    >>> np.zeros((2, 1))
    array([[ 0.],
           [ 0.]])

    >>> s = (2,2)
    >>> np.zeros(s)
    array([[ 0.,  0.],
           [ 0.,  0.]])

    >>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
    array([(0, 0), (0, 0)],
          dtype=[('x', '<i4'), ('y', '<i4')])