Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction std - module numpy

Signature de la fonction std

def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>, *, where=<no value>) 

Description

std.__doc__

    Compute the standard deviation along the specified axis.

    Returns the standard deviation, a measure of the spread of a distribution,
    of the array elements. The standard deviation is computed for the
    flattened array by default, otherwise over the specified axis.

    Parameters
    ----------
    a : array_like
        Calculate the standard deviation of these values.
    axis : None or int or tuple of ints, optional
        Axis or axes along which the standard deviation is computed. The
        default is to compute the standard deviation of the flattened array.

        .. versionadded:: 1.7.0

        If this is a tuple of ints, a standard deviation is performed over
        multiple axes, instead of a single axis or all the axes as before.
    dtype : dtype, optional
        Type to use in computing the standard deviation. For arrays of
        integer type the default is float64, for arrays of float types it is
        the same as the array type.
    out : ndarray, optional
        Alternative output array in which to place the result. It must have
        the same shape as the expected output but the type (of the calculated
        values) will be cast if necessary.
    ddof : int, optional
        Means Delta Degrees of Freedom.  The divisor used in calculations
        is ``N - ddof``, where ``N`` represents the number of elements.
        By default `ddof` is zero.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left
        in the result as dimensions with size one. With this option,
        the result will broadcast correctly against the input array.

        If the default value is passed, then `keepdims` will not be
        passed through to the `std` method of sub-classes of
        `ndarray`, however any non-default value will be.  If the
        sub-class' method does not implement `keepdims` any
        exceptions will be raised.

    where : array_like of bool, optional
        Elements to include in the standard deviation.
        See `~numpy.ufunc.reduce` for details.

        .. versionadded:: 1.20.0

    Returns
    -------
    standard_deviation : ndarray, see dtype parameter above.
        If `out` is None, return a new array containing the standard deviation,
        otherwise return a reference to the output array.

    See Also
    --------
    var, mean, nanmean, nanstd, nanvar
    :ref:`ufuncs-output-type`

    Notes
    -----
    The standard deviation is the square root of the average of the squared
    deviations from the mean, i.e., ``std = sqrt(mean(x))``, where
    ``x = abs(a - a.mean())**2``.

    The average squared deviation is typically calculated as ``x.sum() / N``,
    where ``N = len(x)``. If, however, `ddof` is specified, the divisor
    ``N - ddof`` is used instead. In standard statistical practice, ``ddof=1``
    provides an unbiased estimator of the variance of the infinite population.
    ``ddof=0`` provides a maximum likelihood estimate of the variance for
    normally distributed variables. The standard deviation computed in this
    function is the square root of the estimated variance, so even with
    ``ddof=1``, it will not be an unbiased estimate of the standard deviation
    per se.

    Note that, for complex numbers, `std` takes the absolute
    value before squaring, so that the result is always real and nonnegative.

    For floating-point input, the *std* is computed using the same
    precision the input has. Depending on the input data, this can cause
    the results to be inaccurate, especially for float32 (see example below).
    Specifying a higher-accuracy accumulator using the `dtype` keyword can
    alleviate this issue.

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.std(a)
    1.1180339887498949 # may vary
    >>> np.std(a, axis=0)
    array([1.,  1.])
    >>> np.std(a, axis=1)
    array([0.5,  0.5])

    In single precision, std() can be inaccurate:

    >>> a = np.zeros((2, 512*512), dtype=np.float32)
    >>> a[0, :] = 1.0
    >>> a[1, :] = 0.1
    >>> np.std(a)
    0.45000005

    Computing the standard deviation in float64 is more accurate:

    >>> np.std(a, dtype=np.float64)
    0.44999999925494177 # may vary

    Specifying a where argument:

    >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
    >>> np.std(a)
    2.614064523559687 # may vary
    >>> np.std(a, where=[[True], [True], [False]])
    2.0