Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction hamming - module numpy

Signature de la fonction hamming

def hamming(M) 

Description

hamming.__doc__

    Return the Hamming window.

    The Hamming window is a taper formed by using a weighted cosine.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : ndarray
        The window, with the maximum value normalized to one (the value
        one appears only if the number of samples is odd).

    See Also
    --------
    bartlett, blackman, hanning, kaiser

    Notes
    -----
    The Hamming window is defined as

    .. math::  w(n) = 0.54 - 0.46cos\left(\frac{2\pi{n}}{M-1}\right)
               \qquad 0 \leq n \leq M-1

    The Hamming was named for R. W. Hamming, an associate of J. W. Tukey
    and is described in Blackman and Tukey. It was recommended for
    smoothing the truncated autocovariance function in the time domain.
    Most references to the Hamming window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 109-110.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    >>> np.hamming(12)
    array([ 0.08      ,  0.15302337,  0.34890909,  0.60546483,  0.84123594, # may vary
            0.98136677,  0.98136677,  0.84123594,  0.60546483,  0.34890909,
            0.15302337,  0.08      ])

    Plot the window and the frequency response:

    >>> import matplotlib.pyplot as plt
    >>> from numpy.fft import fft, fftshift
    >>> window = np.hamming(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Hamming window")
    Text(0.5, 1.0, 'Hamming window')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("Sample")
    Text(0.5, 0, 'Sample')
    >>> plt.show()

    >>> plt.figure()
    <Figure size 640x480 with 0 Axes>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Hamming window")
    Text(0.5, 1.0, 'Frequency response of Hamming window')
    >>> plt.ylabel("Magnitude [dB]")
    Text(0, 0.5, 'Magnitude [dB]')
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    Text(0.5, 0, 'Normalized frequency [cycles per sample]')
    >>> plt.axis('tight')
    ...
    >>> plt.show()