Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? Sensibilisation à
l'Intelligence Artificielle
Voir le programme détaillé
Module « numpy »

Fonction nanmedian - module numpy

Signature de la fonction nanmedian

def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=<no value>) 

Description

help(numpy.nanmedian)

Compute the median along the specified axis, while ignoring NaNs.

Returns the median of the array elements.

Parameters
----------
a : array_like
    Input array or object that can be converted to an array.
axis : {int, sequence of int, None}, optional
    Axis or axes along which the medians are computed. The default
    is to compute the median along a flattened version of the array.
    A sequence of axes is supported since version 1.9.0.
out : ndarray, optional
    Alternative output array in which to place the result. It must
    have the same shape and buffer length as the expected output,
    but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
   If True, then allow use of memory of input array `a` for
   calculations. The input array will be modified by the call to
   `median`. This will save memory when you do not need to preserve
   the contents of the input array. Treat the input as undefined,
   but it will probably be fully or partially sorted. Default is
   False. If `overwrite_input` is ``True`` and `a` is not already an
   `ndarray`, an error will be raised.
keepdims : bool, optional
    If this is set to True, the axes which are reduced are left
    in the result as dimensions with size one. With this option,
    the result will broadcast correctly against the original `a`.

    If this is anything but the default value it will be passed
    through (in the special case of an empty array) to the
    `mean` function of the underlying array.  If the array is
    a sub-class and `mean` does not have the kwarg `keepdims` this
    will raise a RuntimeError.

Returns
-------
median : ndarray
    A new array holding the result. If the input contains integers
    or floats smaller than ``float64``, then the output data-type is
    ``np.float64``.  Otherwise, the data-type of the output is the
    same as that of the input. If `out` is specified, that array is
    returned instead.

See Also
--------
mean, median, percentile

Notes
-----
Given a vector ``V`` of length ``N``, the median of ``V`` is the
middle value of a sorted copy of ``V``, ``V_sorted`` - i.e.,
``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two
middle values of ``V_sorted`` when ``N`` is even.

Examples
--------
>>> import numpy as np
>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
>>> a[0, 1] = np.nan
>>> a
array([[10., nan,  4.],
       [ 3.,  2.,  1.]])
>>> np.median(a)
np.float64(nan)
>>> np.nanmedian(a)
3.0
>>> np.nanmedian(a, axis=0)
array([6.5, 2. , 2.5])
>>> np.median(a, axis=1)
array([nan,  2.])
>>> b = a.copy()
>>> np.nanmedian(b, axis=1, overwrite_input=True)
array([7.,  2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.nanmedian(b, axis=None, overwrite_input=True)
3.0
>>> assert not np.all(a==b)



Vous êtes un professionnel et vous avez besoin d'une formation ? Programmation Python
Les fondamentaux
Voir le programme détaillé