Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction compress - module numpy

Signature de la fonction compress

def compress(condition, a, axis=None, out=None) 

Description

compress.__doc__

    Return selected slices of an array along given axis.

    When working along a given axis, a slice along that axis is returned in
    `output` for each index where `condition` evaluates to True. When
    working on a 1-D array, `compress` is equivalent to `extract`.

    Parameters
    ----------
    condition : 1-D array of bools
        Array that selects which entries to return. If len(condition)
        is less than the size of `a` along the given axis, then output is
        truncated to the length of the condition array.
    a : array_like
        Array from which to extract a part.
    axis : int, optional
        Axis along which to take slices. If None (default), work on the
        flattened array.
    out : ndarray, optional
        Output array.  Its type is preserved and it must be of the right
        shape to hold the output.

    Returns
    -------
    compressed_array : ndarray
        A copy of `a` without the slices along axis for which `condition`
        is false.

    See Also
    --------
    take, choose, diag, diagonal, select
    ndarray.compress : Equivalent method in ndarray
    extract: Equivalent method when working on 1-D arrays
    :ref:`ufuncs-output-type`

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4], [5, 6]])
    >>> a
    array([[1, 2],
           [3, 4],
           [5, 6]])
    >>> np.compress([0, 1], a, axis=0)
    array([[3, 4]])
    >>> np.compress([False, True, True], a, axis=0)
    array([[3, 4],
           [5, 6]])
    >>> np.compress([False, True], a, axis=1)
    array([[2],
           [4],
           [6]])

    Working on the flattened array does not return slices along an axis but
    selects elements.

    >>> np.compress([False, True], a)
    array([2])