Module « numpy »
Signature de la fonction histogram
def histogram(a, bins=10, range=None, normed=None, weights=None, density=None)
Description
histogram.__doc__
Compute the histogram of a set of data.
Parameters
----------
a : array_like
Input data. The histogram is computed over the flattened array.
bins : int or sequence of scalars or str, optional
If `bins` is an int, it defines the number of equal-width
bins in the given range (10, by default). If `bins` is a
sequence, it defines a monotonically increasing array of bin edges,
including the rightmost edge, allowing for non-uniform bin widths.
.. versionadded:: 1.11.0
If `bins` is a string, it defines the method used to calculate the
optimal bin width, as defined by `histogram_bin_edges`.
range : (float, float), optional
The lower and upper range of the bins. If not provided, range
is simply ``(a.min(), a.max())``. Values outside the range are
ignored. The first element of the range must be less than or
equal to the second. `range` affects the automatic bin
computation as well. While bin width is computed to be optimal
based on the actual data within `range`, the bin count will fill
the entire range including portions containing no data.
normed : bool, optional
.. deprecated:: 1.6.0
This is equivalent to the `density` argument, but produces incorrect
results for unequal bin widths. It should not be used.
.. versionchanged:: 1.15.0
DeprecationWarnings are actually emitted.
weights : array_like, optional
An array of weights, of the same shape as `a`. Each value in
`a` only contributes its associated weight towards the bin count
(instead of 1). If `density` is True, the weights are
normalized, so that the integral of the density over the range
remains 1.
density : bool, optional
If ``False``, the result will contain the number of samples in
each bin. If ``True``, the result is the value of the
probability *density* function at the bin, normalized such that
the *integral* over the range is 1. Note that the sum of the
histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability *mass* function.
Overrides the ``normed`` keyword if given.
Returns
-------
hist : array
The values of the histogram. See `density` and `weights` for a
description of the possible semantics.
bin_edges : array of dtype float
Return the bin edges ``(length(hist)+1)``.
See Also
--------
histogramdd, bincount, searchsorted, digitize, histogram_bin_edges
Notes
-----
All but the last (righthand-most) bin is half-open. In other words,
if `bins` is::
[1, 2, 3, 4]
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
*includes* 4.
Examples
--------
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))
>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist * np.diff(bin_edges))
1.0
.. versionadded:: 1.11.0
Automated Bin Selection Methods example, using 2 peak random data
with 2000 points:
>>> import matplotlib.pyplot as plt
>>> rng = np.random.RandomState(10) # deterministic random data
>>> a = np.hstack((rng.normal(size=1000),
... rng.normal(loc=5, scale=2, size=1000)))
>>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram
>>> plt.title("Histogram with 'auto' bins")
Text(0.5, 1.0, "Histogram with 'auto' bins")
>>> plt.show()
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :