Module « numpy »
Signature de la fonction median
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False)
Description
median.__doc__
Compute the median along the specified axis.
Returns the median of the array elements.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : {int, sequence of int, None}, optional
Axis or axes along which the medians are computed. The default
is to compute the median along a flattened version of the array.
A sequence of axes is supported since version 1.9.0.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array `a` for
calculations. The input array will be modified by the call to
`median`. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. If `overwrite_input` is ``True`` and `a` is not already an
`ndarray`, an error will be raised.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `arr`.
.. versionadded:: 1.9.0
Returns
-------
median : ndarray
A new array holding the result. If the input contains integers
or floats smaller than ``float64``, then the output data-type is
``np.float64``. Otherwise, the data-type of the output is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
mean, percentile
Notes
-----
Given a vector ``V`` of length ``N``, the median of ``V`` is the
middle value of a sorted copy of ``V``, ``V_sorted`` - i
e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the
two middle values of ``V_sorted`` when ``N`` is even.
Examples
--------
>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
[ 3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([6.5, 4.5, 2.5])
>>> m
array([6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
>>> assert not np.all(a==b)
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :