Module « numpy »
Signature de la fonction nancumsum
def nancumsum(a, axis=None, dtype=None, out=None)
Description
nancumsum.__doc__
Return the cumulative sum of array elements over a given axis treating Not a
Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are
encountered and leading NaNs are replaced by zeros.
Zeros are returned for slices that are all-NaN or empty.
.. versionadded:: 1.12.0
Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened array.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults
to the dtype of `a`, unless `a` has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See :ref:`ufuncs-output-type` for
more details.
Returns
-------
nancumsum : ndarray.
A new array holding the result is returned unless `out` is
specified, in which it is returned. The result has the same
size as `a`, and the same shape as `a` if `axis` is not None
or `a` is a 1-d array.
See Also
--------
numpy.cumsum : Cumulative sum across array propagating NaNs.
isnan : Show which elements are NaN.
Examples
--------
>>> np.nancumsum(1)
array([1])
>>> np.nancumsum([1])
array([1])
>>> np.nancumsum([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumsum(a)
array([1., 3., 6., 6.])
>>> np.nancumsum(a, axis=0)
array([[1., 2.],
[4., 2.]])
>>> np.nancumsum(a, axis=1)
array([[1., 3.],
[3., 3.]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :