Vous êtes un professionnel et vous avez besoin d'une formation ?
		Machine Learning
avec Scikit-Learn
		Voir le programme détaillé	
	
	
            Module « numpy »
            
            
Signature de la fonction arctanh 
def arctanh(*args, **kwargs) 
Description
help(numpy.arctanh)
arctanh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
Inverse hyperbolic tangent element-wise.
Parameters
----------
x : array_like
    Input array.
out : ndarray, None, or tuple of ndarray and None, optional
    A location into which the result is stored. If provided, it must have
    a shape that the inputs broadcast to. If not provided or None,
    a freshly-allocated array is returned. A tuple (possible only as a
    keyword argument) must have length equal to the number of outputs.
where : array_like, optional
    This condition is broadcast over the input. At locations where the
    condition is True, the `out` array will be set to the ufunc result.
    Elsewhere, the `out` array will retain its original value.
    Note that if an uninitialized `out` array is created via the default
    ``out=None``, locations within it where the condition is False will
    remain uninitialized.
**kwargs
    For other keyword-only arguments, see the
    :ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
out : ndarray or scalar
    Array of the same shape as `x`.
    This is a scalar if `x` is a scalar.
See Also
--------
emath.arctanh
Notes
-----
`arctanh` is a multivalued function: for each `x` there are infinitely
many numbers `z` such that ``tanh(z) = x``. The convention is to return
the `z` whose imaginary part lies in `[-pi/2, pi/2]`.
For real-valued input data types, `arctanh` always returns real output.
For each value that cannot be expressed as a real number or infinity,
it yields ``nan`` and sets the `invalid` floating point error flag.
For complex-valued input, `arctanh` is a complex analytical function
that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from
above on the former and from below on the latter.
The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``.
References
----------
.. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions",
       10th printing, 1964, pp. 86.
       https://personal.math.ubc.ca/~cbm/aands/page_86.htm
.. [2] Wikipedia, "Inverse hyperbolic function",
       https://en.wikipedia.org/wiki/Arctanh
Examples
--------
>>> import numpy as np
>>> np.arctanh([0, -0.5])
array([ 0.        , -0.54930614])
                      
            
	
	
	
	
		Vous êtes un professionnel et vous avez besoin d'une formation ?
		RAG (Retrieval-Augmented Generation)et Fine Tuning d'un LLM
		Voir le programme détaillé	
	
	
             
            
            
            
         
        
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :