Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « numpy »

Fonction fromfile - module numpy

Signature de la fonction fromfile

Description

fromfile.__doc__

fromfile(file, dtype=float, count=-1, sep='', offset=0, *, like=None)

    Construct an array from data in a text or binary file.

    A highly efficient way of reading binary data with a known data-type,
    as well as parsing simply formatted text files.  Data written using the
    `tofile` method can be read using this function.

    Parameters
    ----------
    file : file or str or Path
        Open file object or filename.

        .. versionchanged:: 1.17.0
            `pathlib.Path` objects are now accepted.

    dtype : data-type
        Data type of the returned array.
        For binary files, it is used to determine the size and byte-order
        of the items in the file.
        Most builtin numeric types are supported and extension types may be supported.

        .. versionadded:: 1.18.0
            Complex dtypes.

    count : int
        Number of items to read. ``-1`` means all items (i.e., the complete
        file).
    sep : str
        Separator between items if file is a text file.
        Empty ("") separator means the file should be treated as binary.
        Spaces (" ") in the separator match zero or more whitespace characters.
        A separator consisting only of spaces must match at least one
        whitespace.
    offset : int
        The offset (in bytes) from the file's current position. Defaults to 0.
        Only permitted for binary files.

        .. versionadded:: 1.17.0
    like : array_like
        Reference object to allow the creation of arrays which are not
        NumPy arrays. If an array-like passed in as ``like`` supports
        the ``__array_function__`` protocol, the result will be defined
        by it. In this case, it ensures the creation of an array object
        compatible with that passed in via this argument.

        .. note::
            The ``like`` keyword is an experimental feature pending on
            acceptance of :ref:`NEP 35 <NEP35>`.

        .. versionadded:: 1.20.0

    See also
    --------
    load, save
    ndarray.tofile
    loadtxt : More flexible way of loading data from a text file.

    Notes
    -----
    Do not rely on the combination of `tofile` and `fromfile` for
    data storage, as the binary files generated are not platform
    independent.  In particular, no byte-order or data-type information is
    saved.  Data can be stored in the platform independent ``.npy`` format
    using `save` and `load` instead.

    Examples
    --------
    Construct an ndarray:

    >>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
    ...                ('temp', float)])
    >>> x = np.zeros((1,), dtype=dt)
    >>> x['time']['min'] = 10; x['temp'] = 98.25
    >>> x
    array([((10, 0), 98.25)],
          dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

    Save the raw data to disk:

    >>> import tempfile
    >>> fname = tempfile.mkstemp()[1]
    >>> x.tofile(fname)

    Read the raw data from disk:

    >>> np.fromfile(fname, dtype=dt)
    array([((10, 0), 98.25)],
          dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

    The recommended way to store and load data:

    >>> np.save(fname, x)
    >>> np.load(fname + '.npy')
    array([((10, 0), 98.25)],
          dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])