Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « numpy »

Fonction fill_diagonal - module numpy

Signature de la fonction fill_diagonal

def fill_diagonal(a, val, wrap=False) 

Description

help(numpy.fill_diagonal)

Fill the main diagonal of the given array of any dimensionality.

For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
values ``a[i, ..., i]`` with indices ``i`` all identical.  This function
modifies the input array in-place without returning a value.

Parameters
----------
a : array, at least 2-D.
  Array whose diagonal is to be filled in-place.
val : scalar or array_like
  Value(s) to write on the diagonal. If `val` is scalar, the value is
  written along the diagonal. If array-like, the flattened `val` is
  written along the diagonal, repeating if necessary to fill all
  diagonal entries.

wrap : bool
  For tall matrices in NumPy version up to 1.6.2, the
  diagonal "wrapped" after N columns. You can have this behavior
  with this option. This affects only tall matrices.

See also
--------
diag_indices, diag_indices_from

Notes
-----
This functionality can be obtained via `diag_indices`, but internally
this version uses a much faster implementation that never constructs the
indices and uses simple slicing.

Examples
--------
>>> import numpy as np
>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
       [0, 5, 0],
       [0, 0, 5]])

The same function can operate on a 4-D array:

>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)

We only show a few blocks for clarity:

>>> a[0, 0]
array([[4, 0, 0],
       [0, 0, 0],
       [0, 0, 0]])
>>> a[1, 1]
array([[0, 0, 0],
       [0, 4, 0],
       [0, 0, 0]])
>>> a[2, 2]
array([[0, 0, 0],
       [0, 0, 0],
       [0, 0, 4]])

The wrap option affects only tall matrices:

>>> # tall matrices no wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],
       [0, 4, 0],
       [0, 0, 4],
       [0, 0, 0],
       [0, 0, 0]])

>>> # tall matrices wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],
       [0, 4, 0],
       [0, 0, 4],
       [0, 0, 0],
       [4, 0, 0]])

>>> # wide matrices
>>> a = np.zeros((3, 5), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],
       [0, 4, 0, 0, 0],
       [0, 0, 4, 0, 0]])

The anti-diagonal can be filled by reversing the order of elements
using either `numpy.flipud` or `numpy.fliplr`.

>>> a = np.zeros((3, 3), int);
>>> np.fill_diagonal(np.fliplr(a), [1,2,3])  # Horizontal flip
>>> a
array([[0, 0, 1],
       [0, 2, 0],
       [3, 0, 0]])
>>> np.fill_diagonal(np.flipud(a), [1,2,3])  # Vertical flip
>>> a
array([[0, 0, 3],
       [0, 2, 0],
       [1, 0, 0]])

Note that the order in which the diagonal is filled varies depending
on the flip function.


Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé