Module « numpy »
Signature de la fonction multiply
Description
multiply.__doc__
multiply(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])
Multiply arguments element-wise.
Parameters
----------
x1, x2 : array_like
Input arrays to be multiplied.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
y : ndarray
The product of `x1` and `x2`, element-wise.
This is a scalar if both `x1` and `x2` are scalars.
Notes
-----
Equivalent to `x1` * `x2` in terms of array broadcasting.
Examples
--------
>>> np.multiply(2.0, 4.0)
8.0
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.multiply(x1, x2)
array([[ 0., 1., 4.],
[ 0., 4., 10.],
[ 0., 7., 16.]])
The ``*`` operator can be used as a shorthand for ``np.multiply`` on
ndarrays.
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> x1 * x2
array([[ 0., 1., 4.],
[ 0., 4., 10.],
[ 0., 7., 16.]])
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :