Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Module « numpy »
Signature de la fonction divide
def divide(*args, **kwargs)
Description
help(numpy.divide)
divide(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature])
Divide arguments element-wise.
Parameters
----------
x1 : array_like
Dividend array.
x2 : array_like
Divisor array.
If ``x1.shape != x2.shape``, they must be broadcastable to a common
shape (which becomes the shape of the output).
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have
a shape that the inputs broadcast to. If not provided or None,
a freshly-allocated array is returned. A tuple (possible only as a
keyword argument) must have length equal to the number of outputs.
where : array_like, optional
This condition is broadcast over the input. At locations where the
condition is True, the `out` array will be set to the ufunc result.
Elsewhere, the `out` array will retain its original value.
Note that if an uninitialized `out` array is created via the default
``out=None``, locations within it where the condition is False will
remain uninitialized.
**kwargs
For other keyword-only arguments, see the
:ref:`ufunc docs <ufuncs.kwargs>`.
Returns
-------
y : ndarray or scalar
The quotient ``x1/x2``, element-wise.
This is a scalar if both `x1` and `x2` are scalars.
See Also
--------
seterr : Set whether to raise or warn on overflow, underflow and
division by zero.
Notes
-----
Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting.
The ``true_divide(x1, x2)`` function is an alias for
``divide(x1, x2)``.
Examples
--------
>>> import numpy as np
>>> np.divide(2.0, 4.0)
0.5
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = np.arange(3.0)
>>> np.divide(x1, x2)
array([[nan, 1. , 1. ],
[inf, 4. , 2.5],
[inf, 7. , 4. ]])
The ``/`` operator can be used as a shorthand for ``np.divide`` on
ndarrays.
>>> x1 = np.arange(9.0).reshape((3, 3))
>>> x2 = 2 * np.ones(3)
>>> x1 / x2
array([[0. , 0.5, 1. ],
[1.5, 2. , 2.5],
[3. , 3.5, 4. ]])
Vous êtes un professionnel et vous avez besoin d'une formation ?
Sensibilisation àl'Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :