Module « pandas »
Classe « DataFrame »
Informations générales
Héritage
builtins.object
OpsMixin
builtins.object
IndexingMixin
builtins.object
SelectionMixin
builtins.object
DirNamesMixin
PandasObject
NDFrame
DataFrame
Définition
class DataFrame(NDFrame, OpsMixin):
Description [extrait de DataFrame.__doc__]
Two-dimensional, size-mutable, potentially heterogeneous tabular data.
Data structure also contains labeled axes (rows and columns).
Arithmetic operations align on both row and column labels. Can be
thought of as a dict-like container for Series objects. The primary
pandas data structure.
Parameters
----------
data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame
Dict can contain Series, arrays, constants, dataclass or list-like objects. If
data is a dict, column order follows insertion-order.
.. versionchanged:: 0.25.0
If data is a list of dicts, column order follows insertion-order.
index : Index or array-like
Index to use for resulting frame. Will default to RangeIndex if
no indexing information part of input data and no index provided.
columns : Index or array-like
Column labels to use for resulting frame. Will default to
RangeIndex (0, 1, 2, ..., n) if no column labels are provided.
dtype : dtype, default None
Data type to force. Only a single dtype is allowed. If None, infer.
copy : bool, default False
Copy data from inputs. Only affects DataFrame / 2d ndarray input.
See Also
--------
DataFrame.from_records : Constructor from tuples, also record arrays.
DataFrame.from_dict : From dicts of Series, arrays, or dicts.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_table : Read general delimited file into DataFrame.
read_clipboard : Read text from clipboard into DataFrame.
Examples
--------
Constructing DataFrame from a dictionary.
>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = pd.DataFrame(data=d)
>>> df
col1 col2
0 1 3
1 2 4
Notice that the inferred dtype is int64.
>>> df.dtypes
col1 int64
col2 int64
dtype: object
To enforce a single dtype:
>>> df = pd.DataFrame(data=d, dtype=np.int8)
>>> df.dtypes
col1 int8
col2 int8
dtype: object
Constructing DataFrame from numpy ndarray:
>>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]),
... columns=['a', 'b', 'c'])
>>> df2
a b c
0 1 2 3
1 4 5 6
2 7 8 9
Constructing DataFrame from dataclass:
>>> from dataclasses import make_dataclass
>>> Point = make_dataclass("Point", [("x", int), ("y", int)])
>>> pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)])
x y
0 0 0
1 0 3
2 2 3
Constructeur(s)
Liste des attributs statiques
columns | <pandas._libs.properties.AxisProperty object at 0x7f504a7c9670> |
index | <pandas._libs.properties.AxisProperty object at 0x7f504a7c9520> |
Attributs statiques hérités de la classe SelectionMixin
ndim
Liste des propriétés
at | |
attrs | |
axes | |
dtypes | |
empty | |
flags | |
iat | |
iloc | |
loc | |
ndim | |
shape | |
size | |
style | |
T | |
values | |
Opérateurs hérités de la classe OpsMixin
__add__, __and__, __eq__, __floordiv__, __ge__, __gt__, __le__, __lt__, __mod__, __mul__, __ne__, __or__, __pow__, __radd__, __rand__, __rfloordiv__, __rmod__, __rmul__, __ror__, __rpow__, __rsub__, __rtruediv__, __rxor__, __sub__, __truediv__, __xor__
Opérateurs hérités de la classe NDFrame
__contains__, __delitem__, __iadd__, __iand__, __ifloordiv__, __imod__, __imul__, __invert__, __ior__, __ipow__, __isub__, __itruediv__, __ixor__, __neg__, __pos__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__divmod__(self, other) -> 'Tuple[DataFrame, DataFrame]' |
|
__len__(self) -> 'int' |
|
__rdivmod__(self, other) -> 'Tuple[DataFrame, DataFrame]' |
|
__repr__(self) -> 'str' |
|
__rmatmul__(self, other) |
|
agg(self, func=None, axis=0, *args, **kwargs) |
|
aggregate(self, func=None, axis=0, *args, **kwargs) |
|
align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None) -> 'DataFrame' |
|
append(self, other, ignore_index=False, verify_integrity=False, sort=False) -> 'DataFrame' |
|
apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds) |
|
applymap(self, func, na_action: 'Optional[str]' = None) -> 'DataFrame' |
|
assign(self, **kwargs) -> 'DataFrame' |
|
combine(self, other: 'DataFrame', func, fill_value=None, overwrite=True) -> 'DataFrame' |
|
combine_first(self, other: 'DataFrame') -> 'DataFrame' |
|
compare(self, other: 'DataFrame', align_axis: 'Axis' = 1, keep_shape: 'bool' = False, keep_equal: 'bool' = False) -> 'DataFrame' |
|
corr(self, method='pearson', min_periods=1) -> 'DataFrame' |
|
corrwith(self, other, axis=0, drop=False, method='pearson') -> 'Series' |
|
count(self, axis=0, level=None, numeric_only=False) |
|
cov(self, min_periods: 'Optional[int]' = None, ddof: 'Optional[int]' = 1) -> 'DataFrame' |
|
diff(self, periods: 'int' = 1, axis: 'Axis' = 0) -> 'DataFrame' |
|
dot(self, other) |
|
drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise') |
|
drop_duplicates(self, subset: 'Optional[Union[Hashable, Sequence[Hashable]]]' = None, keep: 'Union[str, bool]' = 'first', inplace: 'bool' = False, ignore_index: 'bool' = False) -> 'Optional[DataFrame]' |
|
dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False) |
|
duplicated(self, subset: 'Optional[Union[Hashable, Sequence[Hashable]]]' = None, keep: 'Union[str, bool]' = 'first') -> 'Series' |
|
eval(self, expr, inplace=False, **kwargs) |
|
explode(self, column: 'Union[str, Tuple]', ignore_index: 'bool' = False) -> 'DataFrame' |
|
fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None) -> 'Optional[DataFrame]' |
|
from_dict(data, orient='columns', dtype=None, columns=None) -> 'DataFrame' |
|
from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None) -> 'DataFrame' |
|
groupby(self, by=None, axis=0, level=None, as_index: 'bool' = True, sort: 'bool' = True, group_keys: 'bool' = True, squeeze: 'bool' = <object object at 0x7f5051439e10>, observed: 'bool' = False, dropna: 'bool' = True) -> 'DataFrameGroupBy' |
|
idxmax(self, axis=0, skipna=True) -> 'Series' |
|
idxmin(self, axis=0, skipna=True) -> 'Series' |
|
info(self, verbose: 'Optional[bool]' = None, buf: 'Optional[IO[str]]' = None, max_cols: 'Optional[int]' = None, memory_usage: 'Optional[Union[bool, str]]' = None, show_counts: 'Optional[bool]' = None, null_counts: 'Optional[bool]' = None) -> 'None' |
|
insert(self, loc, column, value, allow_duplicates=False) -> 'None' |
|
isin(self, values) -> 'DataFrame' |
|
isna(self) -> 'DataFrame' |
|
isnull(self) -> 'DataFrame' |
|
items(self) -> 'Iterable[Tuple[Label, Series]]' |
|
iteritems(self) -> 'Iterable[Tuple[Label, Series]]' |
|
iterrows(self) -> 'Iterable[Tuple[Label, Series]]' |
|
itertuples(self, index: 'bool' = True, name: 'Optional[str]' = 'Pandas') |
|
join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False) -> 'DataFrame' |
|
lookup(self, row_labels, col_labels) -> 'np.ndarray' |
|
melt(self, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None, ignore_index=True) -> 'DataFrame' |
|
memory_usage(self, index=True, deep=False) -> 'Series' |
|
merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None) -> 'DataFrame' |
|
mode(self, axis=0, numeric_only=False, dropna=True) -> 'DataFrame' |
|
nlargest(self, n, columns, keep='first') -> 'DataFrame' |
|
notna(self) -> 'DataFrame' |
|
notnull(self) -> 'DataFrame' |
|
nsmallest(self, n, columns, keep='first') -> 'DataFrame' |
|
nunique(self, axis=0, dropna=True) -> 'Series' |
|
pivot(self, index=None, columns=None, values=None) -> 'DataFrame' |
|
pivot_table(self, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All', observed=False) -> 'DataFrame' |
|
pop(self, item: 'Label') -> 'Series' |
|
quantile(self, q=0.5, axis=0, numeric_only=True, interpolation='linear') |
|
query(self, expr, inplace=False, **kwargs) |
|
reindex(self, labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None) |
|
rename(self, mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None, errors='ignore') |
|
reorder_levels(self, order, axis=0) -> 'DataFrame' |
|
replace(self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad') |
|
reset_index(self, level: 'Optional[Union[Hashable, Sequence[Hashable]]]' = None, drop: 'bool' = False, inplace: 'bool' = False, col_level: 'Hashable' = 0, col_fill: 'Label' = '') -> 'Optional[DataFrame]' |
|
round(self, decimals=0, *args, **kwargs) -> 'DataFrame' |
|
select_dtypes(self, include=None, exclude=None) -> 'DataFrame' |
|
set_axis(self, labels, axis: 'Axis' = 0, inplace: 'bool' = False) |
|
set_index(self, keys, drop=True, append=False, inplace=False, verify_integrity=False) |
|
shift(self, periods=1, freq=None, axis=0, fill_value=<object object at 0x7f5051439e10>) -> 'DataFrame' |
|
sort_index(self, axis=0, level=None, ascending: 'Union[Union[bool, int], Sequence[Union[bool, int]]]' = True, inplace: 'bool' = False, kind: 'str' = 'quicksort', na_position: 'str' = 'last', sort_remaining: 'bool' = True, ignore_index: 'bool' = False, key: 'IndexKeyFunc' = None) |
|
sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key: 'ValueKeyFunc' = None) |
|
stack(self, level=-1, dropna=True) |
|
swaplevel(self, i=-2, j=-1, axis=0) -> 'DataFrame' |
|
to_dict(self, orient='dict', into=<class 'dict'>) |
|
to_feather(self, path: 'FilePathOrBuffer[AnyStr]', **kwargs) -> 'None' |
|
to_gbq(self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists='fail', auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None) -> 'None' |
|
to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal='.', bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None) |
|
to_markdown(self, buf: 'Optional[Union[IO[str], str]]' = None, mode: 'str' = 'wt', index: 'bool' = True, storage_options: 'StorageOptions' = None, **kwargs) -> 'Optional[str]' |
|
to_numpy(self, dtype=None, copy: 'bool' = False, na_value=<object object at 0x7f5051439e10>) -> 'np.ndarray' |
|
to_parquet(self, path: 'Optional[FilePathOrBuffer]' = None, engine: 'str' = 'auto', compression: 'Optional[str]' = 'snappy', index: 'Optional[bool]' = None, partition_cols: 'Optional[List[str]]' = None, storage_options: 'StorageOptions' = None, **kwargs) -> 'Optional[bytes]' |
|
to_period(self, freq=None, axis: 'Axis' = 0, copy: 'bool' = True) -> 'DataFrame' |
|
to_records(self, index=True, column_dtypes=None, index_dtypes=None) -> 'np.recarray' |
|
to_stata(self, path: 'FilePathOrBuffer', convert_dates: 'Optional[Dict[Label, str]]' = None, write_index: 'bool' = True, byteorder: 'Optional[str]' = None, time_stamp: 'Optional[datetime.datetime]' = None, data_label: 'Optional[str]' = None, variable_labels: 'Optional[Dict[Label, str]]' = None, version: 'Optional[int]' = 114, convert_strl: 'Optional[Sequence[Label]]' = None, compression: 'CompressionOptions' = 'infer', storage_options: 'StorageOptions' = None) -> 'None' |
|
to_string(self, buf: 'Optional[FilePathOrBuffer[str]]' = None, columns: 'Optional[Sequence[str]]' = None, col_space: 'Optional[int]' = None, header: 'Union[bool, Sequence[str]]' = True, index: 'bool' = True, na_rep: 'str' = 'NaN', formatters: 'Optional[fmt.FormattersType]' = None, float_format: 'Optional[fmt.FloatFormatType]' = None, sparsify: 'Optional[bool]' = None, index_names: 'bool' = True, justify: 'Optional[str]' = None, max_rows: 'Optional[int]' = None, min_rows: 'Optional[int]' = None, max_cols: 'Optional[int]' = None, show_dimensions: 'bool' = False, decimal: 'str' = '.', line_width: 'Optional[int]' = None, max_colwidth: 'Optional[int]' = None, encoding: 'Optional[str]' = None) -> 'Optional[str]' |
|
to_timestamp(self, freq=None, how: 'str' = 'start', axis: 'Axis' = 0, copy: 'bool' = True) -> 'DataFrame' |
|
transform(self, func: 'AggFuncType', axis: 'Axis' = 0, *args, **kwargs) -> 'DataFrame' |
|
transpose(self, *args, copy: 'bool' = False) -> 'DataFrame' |
|
unstack(self, level=-1, fill_value=None) |
|
update(self, other, join='left', overwrite=True, filter_func=None, errors='ignore') -> 'None' |
|
value_counts(self, subset: 'Optional[Sequence[Label]]' = None, normalize: 'bool' = False, sort: 'bool' = True, ascending: 'bool' = False) |
|
Méthodes héritées de la classe OpsMixin
__init_subclass__, __subclasshook__
Méthodes héritées de la classe NDFrame
__abs__, __array__, __array_ufunc__, __array_wrap__, __bool__, __copy__, __deepcopy__, __finalize__, __getattr__, __getstate__, __hash__, __iter__, __nonzero__, __round__, __setattr__, __setstate__, abs, add_prefix, add_suffix, all, any, asfreq, asof, astype, at_time, backfill, between_time, bfill, bool, clip, convert_dtypes, copy, cummax, cummin, cumprod, cumsum, describe, droplevel, equals, ewm, expanding, ffill, filter, first, first_valid_index, get, head, infer_objects, interpolate, keys, kurt, kurtosis, last, last_valid_index, mad, mask, max, mean, median, min, pad, pct_change, pipe, prod, product, rank, reindex_like, rename_axis, resample, rolling, sample, sem, set_flags, skew, slice_shift, squeeze, std, sum, swapaxes, tail, take, to_clipboard, to_csv, to_excel, to_hdf, to_json, to_latex, to_pickle, to_sql, to_xarray, truncate, tshift, tz_convert, tz_localize, var, where, xs
Méthodes héritées de la classe PandasObject
__sizeof__
Méthodes héritées de la classe DirNamesMixin
__dir__
Méthodes héritées de la classe object
__delattr__,
__format__,
__getattribute__,
__reduce__,
__reduce_ex__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :