Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « pandas »

Fonction notna - module pandas

Signature de la fonction notna

def notna(obj) 

Description

notna.__doc__

    Detect non-missing values for an array-like object.

    This function takes a scalar or array-like object and indicates
    whether values are valid (not missing, which is ``NaN`` in numeric
    arrays, ``None`` or ``NaN`` in object arrays, ``NaT`` in datetimelike).

    Parameters
    ----------
    obj : array-like or object value
        Object to check for *not* null or *non*-missing values.

    Returns
    -------
    bool or array-like of bool
        For scalar input, returns a scalar boolean.
        For array input, returns an array of boolean indicating whether each
        corresponding element is valid.

    See Also
    --------
    isna : Boolean inverse of pandas.notna.
    Series.notna : Detect valid values in a Series.
    DataFrame.notna : Detect valid values in a DataFrame.
    Index.notna : Detect valid values in an Index.

    Examples
    --------
    Scalar arguments (including strings) result in a scalar boolean.

    >>> pd.notna('dog')
    True

    >>> pd.notna(pd.NA)
    False

    >>> pd.notna(np.nan)
    False

    ndarrays result in an ndarray of booleans.

    >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
    >>> array
    array([[ 1., nan,  3.],
           [ 4.,  5., nan]])
    >>> pd.notna(array)
    array([[ True, False,  True],
           [ True,  True, False]])

    For indexes, an ndarray of booleans is returned.

    >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
    ...                          "2017-07-08"])
    >>> index
    DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
                  dtype='datetime64[ns]', freq=None)
    >>> pd.notna(index)
    array([ True,  True, False,  True])

    For Series and DataFrame, the same type is returned, containing booleans.

    >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
    >>> df
         0     1    2
    0  ant   bee  cat
    1  dog  None  fly
    >>> pd.notna(df)
          0      1     2
    0  True   True  True
    1  True  False  True

    >>> pd.notna(df[1])
    0     True
    1    False
    Name: 1, dtype: bool