Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « pandas »

Fonction interval_range - module pandas

Signature de la fonction interval_range

def interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right') 

Description

interval_range.__doc__

    Return a fixed frequency IntervalIndex.

    Parameters
    ----------
    start : numeric or datetime-like, default None
        Left bound for generating intervals.
    end : numeric or datetime-like, default None
        Right bound for generating intervals.
    periods : int, default None
        Number of periods to generate.
    freq : numeric, str, or DateOffset, default None
        The length of each interval. Must be consistent with the type of start
        and end, e.g. 2 for numeric, or '5H' for datetime-like.  Default is 1
        for numeric and 'D' for datetime-like.
    name : str, default None
        Name of the resulting IntervalIndex.
    closed : {'left', 'right', 'both', 'neither'}, default 'right'
        Whether the intervals are closed on the left-side, right-side, both
        or neither.

    Returns
    -------
    IntervalIndex

    See Also
    --------
    IntervalIndex : An Index of intervals that are all closed on the same side.

    Notes
    -----
    Of the four parameters ``start``, ``end``, ``periods``, and ``freq``,
    exactly three must be specified. If ``freq`` is omitted, the resulting
    ``IntervalIndex`` will have ``periods`` linearly spaced elements between
    ``start`` and ``end``, inclusively.

    To learn more about datetime-like frequency strings, please see `this link
    <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.

    Examples
    --------
    Numeric ``start`` and  ``end`` is supported.

    >>> pd.interval_range(start=0, end=5)
    IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
                  closed='right', dtype='interval[int64]')

    Additionally, datetime-like input is also supported.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   end=pd.Timestamp('2017-01-04'))
    IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03],
                   (2017-01-03, 2017-01-04]],
                  closed='right', dtype='interval[datetime64[ns]]')

    The ``freq`` parameter specifies the frequency between the left and right.
    endpoints of the individual intervals within the ``IntervalIndex``.  For
    numeric ``start`` and ``end``, the frequency must also be numeric.

    >>> pd.interval_range(start=0, periods=4, freq=1.5)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
                  closed='right', dtype='interval[float64]')

    Similarly, for datetime-like ``start`` and ``end``, the frequency must be
    convertible to a DateOffset.

    >>> pd.interval_range(start=pd.Timestamp('2017-01-01'),
    ...                   periods=3, freq='MS')
    IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01],
                   (2017-03-01, 2017-04-01]],
                  closed='right', dtype='interval[datetime64[ns]]')

    Specify ``start``, ``end``, and ``periods``; the frequency is generated
    automatically (linearly spaced).

    >>> pd.interval_range(start=0, end=6, periods=4)
    IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]],
              closed='right',
              dtype='interval[float64]')

    The ``closed`` parameter specifies which endpoints of the individual
    intervals within the ``IntervalIndex`` are closed.

    >>> pd.interval_range(end=5, periods=4, closed='both')
    IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]],
                  closed='both', dtype='interval[int64]')