Module « pandas »
Classe « DatetimeIndex »
Informations générales
Héritage
builtins.object
DirNamesMixin
PandasObject
builtins.object
OpsMixin
IndexOpsMixin
Index
NumericIndex
IntegerIndex
Int64Index
builtins.object
DirNamesMixin
PandasObject
builtins.object
OpsMixin
IndexOpsMixin
Index
ExtensionIndex
NDArrayBackedExtensionIndex
DatetimeIndexOpsMixin
DatetimeTimedeltaMixin
DatetimeIndex
Définition
class DatetimeIndex(DatetimeTimedeltaMixin):
Description [extrait de DatetimeIndex.__doc__]
Immutable ndarray-like of datetime64 data.
Represented internally as int64, and which can be boxed to Timestamp objects
that are subclasses of datetime and carry metadata.
Parameters
----------
data : array-like (1-dimensional), optional
Optional datetime-like data to construct index with.
freq : str or pandas offset object, optional
One of pandas date offset strings or corresponding objects. The string
'infer' can be passed in order to set the frequency of the index as the
inferred frequency upon creation.
tz : pytz.timezone or dateutil.tz.tzfile or datetime.tzinfo or str
Set the Timezone of the data.
normalize : bool, default False
Normalize start/end dates to midnight before generating date range.
closed : {'left', 'right'}, optional
Set whether to include `start` and `end` that are on the
boundary. The default includes boundary points on either end.
ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise'
When clocks moved backward due to DST, ambiguous times may arise.
For example in Central European Time (UTC+01), when going from 03:00
DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC
and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter
dictates how ambiguous times should be handled.
- 'infer' will attempt to infer fall dst-transition hours based on
order
- bool-ndarray where True signifies a DST time, False signifies a
non-DST time (note that this flag is only applicable for ambiguous
times)
- 'NaT' will return NaT where there are ambiguous times
- 'raise' will raise an AmbiguousTimeError if there are ambiguous times.
dayfirst : bool, default False
If True, parse dates in `data` with the day first order.
yearfirst : bool, default False
If True parse dates in `data` with the year first order.
dtype : numpy.dtype or DatetimeTZDtype or str, default None
Note that the only NumPy dtype allowed is ‘datetime64[ns]’.
copy : bool, default False
Make a copy of input ndarray.
name : label, default None
Name to be stored in the index.
Attributes
----------
year
month
day
hour
minute
second
microsecond
nanosecond
date
time
timetz
dayofyear
day_of_year
weekofyear
week
dayofweek
day_of_week
weekday
quarter
tz
freq
freqstr
is_month_start
is_month_end
is_quarter_start
is_quarter_end
is_year_start
is_year_end
is_leap_year
inferred_freq
Methods
-------
normalize
strftime
snap
tz_convert
tz_localize
round
floor
ceil
to_period
to_perioddelta
to_pydatetime
to_series
to_frame
month_name
day_name
mean
std
See Also
--------
Index : The base pandas Index type.
TimedeltaIndex : Index of timedelta64 data.
PeriodIndex : Index of Period data.
to_datetime : Convert argument to datetime.
date_range : Create a fixed-frequency DatetimeIndex.
Notes
-----
To learn more about the frequency strings, please see `this link
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__.
Constructeur(s)
__new__(cls, data=None, freq=<object object at 0x7f5051439e10>, tz=None, normalize=False, closed=None, ambiguous='raise', dayfirst=False, yearfirst=False, dtype=None, copy=False, name=None) |
|
Liste des attributs statiques
array | <pandas._libs.properties.CachedProperty object at 0x7f504b9fe2c0> |
hasnans | <pandas._libs.properties.CachedProperty object at 0x7f504b755080> |
inferred_freq | <pandas._libs.properties.CachedProperty object at 0x7f504b751d00> |
is_all_dates | <pandas._libs.properties.CachedProperty object at 0x7f504bd34c40> |
is_normalized | <pandas._libs.properties.CachedProperty object at 0x7f504b75ce80> |
is_unique | <pandas._libs.properties.CachedProperty object at 0x7f504bd34880> |
resolution | <pandas._libs.properties.CachedProperty object at 0x7f504b7554c0> |
Attributs statiques hérités de la classe DatetimeTimedeltaMixin
dtype
Attributs statiques hérités de la classe NumericIndex
inferred_type
Liste des propriétés
asi8 | |
date | |
day | |
day_of_week | |
day_of_year | |
dayofweek | |
dayofyear | |
days_in_month | |
daysinmonth | |
dtype | |
empty | |
freq | |
freqstr | |
has_duplicates | |
hour | |
inferred_type | |
is_leap_year | |
is_monotonic | |
is_monotonic_decreasing | |
is_monotonic_increasing | |
is_month_end | |
is_month_start | |
is_quarter_end | |
is_quarter_start | |
is_year_end | |
is_year_start | |
microsecond | |
minute | |
month | |
name | |
names | |
nanosecond | |
nbytes | |
ndim | |
nlevels | |
quarter | |
second | |
shape | |
size | |
T | |
time | |
timetz | |
tz | |
tzinfo | |
values | |
week | |
weekday | |
weekofyear | |
year | |
Propriétés héritées de la classe IndexOpsMixin
array, is_unique
Liste des opérateurs
Opérateurs hérités de la classe IntegerIndex
__contains__
Liste des opérateurs
Opérateurs hérités de la classe ExtensionIndex
__getitem__
Liste des opérateurs
Opérateurs hérités de la classe Index
__and__, __iadd__, __inv__, __neg__, __or__, __pos__, __setitem__, __xor__
Liste des opérateurs
Opérateurs hérités de la classe OpsMixin
__add__, __eq__, __floordiv__, __ge__, __gt__, __le__, __lt__, __mod__, __mul__, __ne__, __pow__, __radd__, __rand__, __rfloordiv__, __rmod__, __rmul__, __ror__, __rpow__, __rsub__, __rtruediv__, __rxor__, __sub__, __truediv__
Liste des méthodes
Toutes les méthodes
Méthodes d'instance
Méthodes statiques
Méthodes dépréciées
__reduce__(self) |
|
get_loc(self, key, method=None, tolerance=None) |
|
indexer_at_time(self, time, asof=False) |
|
indexer_between_time(self, start_time, end_time, include_start=True, include_end=True) |
|
isocalendar(self) -> 'DataFrame' |
|
slice_indexer(self, start=None, end=None, step=None, kind=None) |
|
snap(self, freq='S') |
|
to_julian_date(self) -> 'Float64Index' |
|
to_perioddelta(self, freq) -> 'TimedeltaIndex' |
|
to_series(self, keep_tz=<object object at 0x7f5051439e10>, index=None, name=None) |
|
tz_convert(self, tz) -> 'DatetimeIndex' |
|
tz_localize(self, tz, ambiguous='raise', nonexistent='raise') -> 'DatetimeIndex' |
|
union_many(self, others) |
|
Méthodes héritées de la classe DatetimeTimedeltaMixin
__init_subclass__, __subclasshook__, difference, insert, intersection, is_type_compatible, join
Méthodes héritées de la classe DatetimeIndexOpsMixin
__array_wrap__, argmax, argmin, delete, equals, format, max, min, shift, take, tolist
Méthodes héritées de la classe NDArrayBackedExtensionIndex
putmask, where
Méthodes héritées de la classe ExtensionIndex
astype, map, repeat, searchsorted
Méthodes héritées de la classe Index
__abs__, __array__, __bool__, __copy__, __deepcopy__, __hash__, __len__, __nonzero__, __repr__, all, any, append, argsort, asof, asof_locs, copy, drop, drop_duplicates, droplevel, dropna, duplicated, fillna, get_indexer, get_indexer_for, get_indexer_non_unique, get_level_values, get_slice_bound, get_value, groupby, holds_integer, identical, is_, is_boolean, is_categorical, is_floating, is_integer, is_interval, is_mixed, is_numeric, is_object, isin, isna, isnull, memory_usage, notna, notnull, ravel, reindex, rename, set_names, set_value, slice_locs, sort, sort_values, sortlevel, symmetric_difference, to_flat_index, to_frame, to_native_types, union, unique, view
Méthodes héritées de la classe PandasObject
__sizeof__
Méthodes héritées de la classe DirNamesMixin
__dir__
Méthodes héritées de la classe IndexOpsMixin
__iter__, factorize, item, nunique, to_list, to_numpy, transpose, value_counts
Méthodes héritées de la classe OpsMixin
__divmod__, __rdivmod__
Méthodes héritées de la classe object
__delattr__,
__format__,
__getattribute__,
__reduce_ex__,
__setattr__,
__str__
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :