Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « DatetimeIndex »

Méthode pandas.DatetimeIndex.tz_localize

Signature de la méthode tz_localize

def tz_localize(self, tz, ambiguous='raise', nonexistent='raise') -> 'DatetimeIndex' 

Description

tz_localize.__doc__

Localize tz-naive Datetime Array/Index to tz-aware
Datetime Array/Index.

This method takes a time zone (tz) naive Datetime Array/Index object
and makes this time zone aware. It does not move the time to another
time zone.
Time zone localization helps to switch from time zone aware to time
zone unaware objects.

Parameters
----------
tz : str, pytz.timezone, dateutil.tz.tzfile or None
    Time zone to convert timestamps to. Passing ``None`` will
    remove the time zone information preserving local time.
ambiguous : 'infer', 'NaT', bool array, default 'raise'
    When clocks moved backward due to DST, ambiguous times may arise.
    For example in Central European Time (UTC+01), when going from
    03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at
    00:30:00 UTC and at 01:30:00 UTC. In such a situation, the
    `ambiguous` parameter dictates how ambiguous times should be
    handled.

    - 'infer' will attempt to infer fall dst-transition hours based on
      order
    - bool-ndarray where True signifies a DST time, False signifies a
      non-DST time (note that this flag is only applicable for
      ambiguous times)
    - 'NaT' will return NaT where there are ambiguous times
    - 'raise' will raise an AmbiguousTimeError if there are ambiguous
      times.

nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, default 'raise'
    A nonexistent time does not exist in a particular timezone
    where clocks moved forward due to DST.

    - 'shift_forward' will shift the nonexistent time forward to the
      closest existing time
    - 'shift_backward' will shift the nonexistent time backward to the
      closest existing time
    - 'NaT' will return NaT where there are nonexistent times
    - timedelta objects will shift nonexistent times by the timedelta
    - 'raise' will raise an NonExistentTimeError if there are
      nonexistent times.

    .. versionadded:: 0.24.0

Returns
-------
Same type as self
    Array/Index converted to the specified time zone.

Raises
------
TypeError
    If the Datetime Array/Index is tz-aware and tz is not None.

See Also
--------
DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from
    one time zone to another.

Examples
--------
>>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3)
>>> tz_naive
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
               '2018-03-03 09:00:00'],
              dtype='datetime64[ns]', freq='D')

Localize DatetimeIndex in US/Eastern time zone:

>>> tz_aware = tz_naive.tz_localize(tz='US/Eastern')
>>> tz_aware
DatetimeIndex(['2018-03-01 09:00:00-05:00',
               '2018-03-02 09:00:00-05:00',
               '2018-03-03 09:00:00-05:00'],
              dtype='datetime64[ns, US/Eastern]', freq=None)

With the ``tz=None``, we can remove the time zone information
while keeping the local time (not converted to UTC):

>>> tz_aware.tz_localize(None)
DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
               '2018-03-03 09:00:00'],
              dtype='datetime64[ns]', freq=None)

Be careful with DST changes. When there is sequential data, pandas can
infer the DST time:

>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00',
...                               '2018-10-28 02:00:00',
...                               '2018-10-28 02:30:00',
...                               '2018-10-28 02:00:00',
...                               '2018-10-28 02:30:00',
...                               '2018-10-28 03:00:00',
...                               '2018-10-28 03:30:00']))
>>> s.dt.tz_localize('CET', ambiguous='infer')
0   2018-10-28 01:30:00+02:00
1   2018-10-28 02:00:00+02:00
2   2018-10-28 02:30:00+02:00
3   2018-10-28 02:00:00+01:00
4   2018-10-28 02:30:00+01:00
5   2018-10-28 03:00:00+01:00
6   2018-10-28 03:30:00+01:00
dtype: datetime64[ns, CET]

In some cases, inferring the DST is impossible. In such cases, you can
pass an ndarray to the ambiguous parameter to set the DST explicitly

>>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00',
...                               '2018-10-28 02:36:00',
...                               '2018-10-28 03:46:00']))
>>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False]))
0   2018-10-28 01:20:00+02:00
1   2018-10-28 02:36:00+02:00
2   2018-10-28 03:46:00+01:00
dtype: datetime64[ns, CET]

If the DST transition causes nonexistent times, you can shift these
dates forward or backwards with a timedelta object or `'shift_forward'`
or `'shift_backwards'`.

>>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00',
...                               '2015-03-29 03:30:00']))
>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward')
0   2015-03-29 03:00:00+02:00
1   2015-03-29 03:30:00+02:00
dtype: datetime64[ns, Europe/Warsaw]

>>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward')
0   2015-03-29 01:59:59.999999999+01:00
1   2015-03-29 03:30:00+02:00
dtype: datetime64[ns, Europe/Warsaw]

>>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H'))
0   2015-03-29 03:30:00+02:00
1   2015-03-29 03:30:00+02:00
dtype: datetime64[ns, Europe/Warsaw]