Module « pandas »
Signature de la fonction array
def array(data: 'Union[Sequence[object], AnyArrayLike]', dtype: 'Optional[Dtype]' = None, copy: 'bool' = True) -> 'ExtensionArray'
Description
array.__doc__
Create an array.
.. versionadded:: 0.24.0
Parameters
----------
data : Sequence of objects
The scalars inside `data` should be instances of the
scalar type for `dtype`. It's expected that `data`
represents a 1-dimensional array of data.
When `data` is an Index or Series, the underlying array
will be extracted from `data`.
dtype : str, np.dtype, or ExtensionDtype, optional
The dtype to use for the array. This may be a NumPy
dtype or an extension type registered with pandas using
:meth:`pandas.api.extensions.register_extension_dtype`.
If not specified, there are two possibilities:
1. When `data` is a :class:`Series`, :class:`Index`, or
:class:`ExtensionArray`, the `dtype` will be taken
from the data.
2. Otherwise, pandas will attempt to infer the `dtype`
from the data.
Note that when `data` is a NumPy array, ``data.dtype`` is
*not* used for inferring the array type. This is because
NumPy cannot represent all the types of data that can be
held in extension arrays.
Currently, pandas will infer an extension dtype for sequences of
============================== =====================================
Scalar Type Array Type
============================== =====================================
:class:`pandas.Interval` :class:`pandas.arrays.IntervalArray`
:class:`pandas.Period` :class:`pandas.arrays.PeriodArray`
:class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray`
:class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray`
:class:`int` :class:`pandas.arrays.IntegerArray`
:class:`float` :class:`pandas.arrays.FloatingArray`
:class:`str` :class:`pandas.arrays.StringArray`
:class:`bool` :class:`pandas.arrays.BooleanArray`
============================== =====================================
For all other cases, NumPy's usual inference rules will be used.
.. versionchanged:: 1.0.0
Pandas infers nullable-integer dtype for integer data,
string dtype for string data, and nullable-boolean dtype
for boolean data.
.. versionchanged:: 1.2.0
Pandas now also infers nullable-floating dtype for float-like
input data
copy : bool, default True
Whether to copy the data, even if not necessary. Depending
on the type of `data`, creating the new array may require
copying data, even if ``copy=False``.
Returns
-------
ExtensionArray
The newly created array.
Raises
------
ValueError
When `data` is not 1-dimensional.
See Also
--------
numpy.array : Construct a NumPy array.
Series : Construct a pandas Series.
Index : Construct a pandas Index.
arrays.PandasArray : ExtensionArray wrapping a NumPy array.
Series.array : Extract the array stored within a Series.
Notes
-----
Omitting the `dtype` argument means pandas will attempt to infer the
best array type from the values in the data. As new array types are
added by pandas and 3rd party libraries, the "best" array type may
change. We recommend specifying `dtype` to ensure that
1. the correct array type for the data is returned
2. the returned array type doesn't change as new extension types
are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned
array matters, we recommend specifying the `dtype` as a concrete object
rather than a string alias or allowing it to be inferred. For example,
a future version of pandas or a 3rd-party library may include a
dedicated ExtensionArray for string data. In this event, the following
would no longer return a :class:`arrays.PandasArray` backed by a NumPy
array.
>>> pd.array(['a', 'b'], dtype=str)
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string
data. If you really need the new array to be backed by a NumPy array,
specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1"))
<PandasArray>
['a', 'b']
Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
* :class:`arrays.DatetimeArray`
* :class:`arrays.TimedeltaArray`
When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is
passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray``
rather than a ``PandasArray``. This is for symmetry with the case of
timezone-aware data, which NumPy does not natively support.
>>> pd.array(['2015', '2016'], dtype='datetime64[ns]')
<DatetimeArray>
['2015-01-01 00:00:00', '2016-01-01 00:00:00']
Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]')
<TimedeltaArray>
['0 days 01:00:00', '0 days 02:00:00']
Length: 2, dtype: timedelta64[ns]
Examples
--------
If a dtype is not specified, pandas will infer the best dtype from the values.
See the description of `dtype` for the types pandas infers for.
>>> pd.array([1, 2])
<IntegerArray>
[1, 2]
Length: 2, dtype: Int64
>>> pd.array([1, 2, np.nan])
<IntegerArray>
[1, 2, <NA>]
Length: 3, dtype: Int64
>>> pd.array([1.1, 2.2])
<FloatingArray>
[1.1, 2.2]
Length: 2, dtype: Float64
>>> pd.array(["a", None, "c"])
<StringArray>
['a', <NA>, 'c']
Length: 3, dtype: string
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")])
<PeriodArray>
['2000-01-01', '2000-01-01']
Length: 2, dtype: period[D]
You can use the string alias for `dtype`
>>> pd.array(['a', 'b', 'a'], dtype='category')
['a', 'b', 'a']
Categories (2, object): ['a', 'b']
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'],
... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True))
['a', 'b', 'a']
Categories (3, object): ['a' < 'b' < 'c']
If pandas does not infer a dedicated extension type a
:class:`arrays.PandasArray` is returned.
>>> pd.array([1 + 1j, 3 + 2j])
<PandasArray>
[(1+1j), (3+2j)]
Length: 2, dtype: complex128
As mentioned in the "Notes" section, new extension types may be added
in the future (by pandas or 3rd party libraries), causing the return
value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype`
as a NumPy dtype if you need to ensure there's no future change in
behavior.
>>> pd.array([1, 2], dtype=np.dtype("int32"))
<PandasArray>
[1, 2]
Length: 2, dtype: int32
`data` must be 1-dimensional. A ValueError is raised when the input
has the wrong dimensionality.
>>> pd.array(1)
Traceback (most recent call last):
...
ValueError: Cannot pass scalar '1' to 'pandas.array'.
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :