Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Vous êtes un professionnel et vous avez besoin d'une formation ? RAG (Retrieval-Augmented Generation)
et Fine Tuning d'un LLM
Voir le programme détaillé
Module « pandas »

Classe « Index »

Informations générales

Héritage

builtins.object
    DirNamesMixin
        PandasObject
builtins.object
    OpsMixin
        IndexOpsMixin
            Index

Définition

class Index(IndexOpsMixin, PandasObject):

help(Index)

Immutable sequence used for indexing and alignment.

The basic object storing axis labels for all pandas objects.

.. versionchanged:: 2.0.0

   Index can hold all numpy numeric dtypes (except float16). Previously only
   int64/uint64/float64 dtypes were accepted.

Parameters
----------
data : array-like (1-dimensional)
dtype : str, numpy.dtype, or ExtensionDtype, optional
    Data type for the output Index. If not specified, this will be
    inferred from `data`.
    See the :ref:`user guide <basics.dtypes>` for more usages.
copy : bool, default False
    Copy input data.
name : object
    Name to be stored in the index.
tupleize_cols : bool (default: True)
    When True, attempt to create a MultiIndex if possible.

See Also
--------
RangeIndex : Index implementing a monotonic integer range.
CategoricalIndex : Index of :class:`Categorical` s.
MultiIndex : A multi-level, or hierarchical Index.
IntervalIndex : An Index of :class:`Interval` s.
DatetimeIndex : Index of datetime64 data.
TimedeltaIndex : Index of timedelta64 data.
PeriodIndex : Index of Period data.

Notes
-----
An Index instance can **only** contain hashable objects.
An Index instance *can not* hold numpy float16 dtype.

Examples
--------
>>> pd.Index([1, 2, 3])
Index([1, 2, 3], dtype='int64')

>>> pd.Index(list('abc'))
Index(['a', 'b', 'c'], dtype='object')

>>> pd.Index([1, 2, 3], dtype="uint8")
Index([1, 2, 3], dtype='uint8')

Constructeur(s)

Signature du constructeur Description
__new__(cls, data=None, dtype=None, copy: 'bool' = False, name=None, tupleize_cols: 'bool' = True) -> 'Self'
__init__(self, /, *args, **kwargs) Initialize self. See help(type(self)) for accurate signature. [extrait de __init__.__doc__]

Liste des attributs statiques

Nom de l'attribut Valeur
array<pandas._libs.properties.CachedProperty object at 0x0000020D9B489680>
dtype<pandas._libs.properties.CachedProperty object at 0x0000020D9B47BF80>
hasnans<pandas._libs.properties.CachedProperty object at 0x0000020D9B488B40>
inferred_type<pandas._libs.properties.CachedProperty object at 0x0000020D9B4889C0>
is_unique<pandas._libs.properties.CachedProperty object at 0x0000020D9B4886C0>

Liste des propriétés

Nom de la propriétéDescription
empty
has_duplicates
is_monotonic_decreasing
is_monotonic_increasing
name
names
nbytes
ndim
nlevels
shape
size
T
values

Propriétés héritées de la classe IndexOpsMixin

array, dtype, is_unique

Liste des opérateurs

Signature de l'opérateur Description
__contains__(self, key: 'Any') -> 'bool'
__getitem__(self, key)
__iadd__(self, other)
__invert__(self) -> 'Index'
__neg__(self) -> 'Index'
__pos__(self) -> 'Index'
__setitem__(self, key, value) -> 'None'

Opérateurs hérités de la classe OpsMixin

__add__, __and__, __eq__, __floordiv__, __ge__, __gt__, __le__, __lt__, __mod__, __mul__, __ne__, __or__, __pow__, __radd__, __rand__, __rfloordiv__, __rmod__, __rmul__, __ror__, __rpow__, __rsub__, __rtruediv__, __rxor__, __sub__, __truediv__, __xor__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__abs__(self) -> 'Index'
__array__(self, dtype=None, copy=None) -> 'np.ndarray'
__array_ufunc__(self, ufunc: 'np.ufunc', method: 'str_t', *inputs, **kwargs)
__array_wrap__(self, result, context=None, return_scalar=False)
__bool__(self) -> 'NoReturn'
__copy__(self, **kwargs) -> 'Self'
__deepcopy__(self, memo=None) -> 'Self'
__len__(self) -> 'int'
__nonzero__(self) -> 'NoReturn'
__reduce__(self)
__repr__(self) -> 'str_t'
all(self, *args, **kwargs)
any(self, *args, **kwargs)
append(self, other: 'Index | Sequence[Index]') -> 'Index'
argmax(self, axis=None, skipna: 'bool' = True, *args, **kwargs) -> 'int'
argmin(self, axis=None, skipna: 'bool' = True, *args, **kwargs) -> 'int'
argsort(self, *args, **kwargs) -> 'npt.NDArray[np.intp]'
asof(self, label)
asof_locs(self, where: 'Index', mask: 'npt.NDArray[np.bool_]') -> 'npt.NDArray[np.intp]'
astype(self, dtype, copy: 'bool' = True)
copy(self, name: 'Hashable | None' = None, deep: 'bool' = False) -> 'Self'
delete(self, loc) -> 'Self'
diff(self, periods: 'int' = 1) -> 'Index'
difference(self, other, sort=None)
drop(self, labels: 'Index | np.ndarray | Iterable[Hashable]', errors: 'IgnoreRaise' = 'raise') -> 'Index'
drop_duplicates(self, *, keep: 'DropKeep' = 'first') -> 'Self'
droplevel(self, level: 'IndexLabel' = 0)
dropna(self, how: 'AnyAll' = 'any') -> 'Self'
duplicated(self, keep: 'DropKeep' = 'first') -> 'npt.NDArray[np.bool_]'
equals(self, other: 'Any') -> 'bool'
fillna(self, value=None, downcast=<no_default>)
format(self, name: 'bool' = False, formatter: 'Callable | None' = None, na_rep: 'str_t' = 'NaN') -> 'list[str_t]'
get_indexer(self, target, method: 'ReindexMethod | None' = None, limit: 'int | None' = None, tolerance=None) -> 'npt.NDArray[np.intp]'
get_indexer_for(self, target) -> 'npt.NDArray[np.intp]'
get_indexer_non_unique(self, target) -> 'tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]'
get_level_values(self, level) -> 'Index'
get_loc(self, key)
get_slice_bound(self, label, side: "Literal['left', 'right']") -> 'int'
groupby(self, values) -> 'PrettyDict[Hashable, np.ndarray]'
holds_integer(self) -> 'bool'
identical(self, other) -> 'bool'
infer_objects(self, copy: 'bool' = True) -> 'Index'
insert(self, loc: 'int', item) -> 'Index'
intersection(self, other, sort: 'bool' = False)
is_(self, other) -> 'bool'
is_boolean(self) -> 'bool'
is_categorical(self) -> 'bool'
is_floating(self) -> 'bool'
is_integer(self) -> 'bool'
is_interval(self) -> 'bool'
is_numeric(self) -> 'bool'
is_object(self) -> 'bool'
isin(self, values, level=None) -> 'npt.NDArray[np.bool_]'
isna(self) -> 'npt.NDArray[np.bool_]'
isnull(self) -> 'npt.NDArray[np.bool_]'
join(self, other: 'Index', *, how: 'JoinHow' = 'left', level: 'Level | None' = None, return_indexers: 'bool' = False, sort: 'bool' = False) -> 'Index | tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]'
map(self, mapper, na_action: "Literal['ignore'] | None" = None)
max(self, axis=None, skipna: 'bool' = True, *args, **kwargs)
memory_usage(self, deep: 'bool' = False) -> 'int'
min(self, axis=None, skipna: 'bool' = True, *args, **kwargs)
notna(self) -> 'npt.NDArray[np.bool_]'
notnull(self) -> 'npt.NDArray[np.bool_]'
putmask(self, mask, value) -> 'Index'
ravel(self, order: 'str_t' = 'C') -> 'Self'
reindex(self, target, method: 'ReindexMethod | None' = None, level=None, limit: 'int | None' = None, tolerance: 'float | None' = None) -> 'tuple[Index, npt.NDArray[np.intp] | None]'
rename(self, name, *, inplace: 'bool' = False) -> 'Self | None'
repeat(self, repeats, axis: 'None' = None) -> 'Self'
round(self, decimals: 'int' = 0) -> 'Self'
set_names(self, names, *, level=None, inplace: 'bool' = False) -> 'Self | None'
shift(self, periods: 'int' = 1, freq=None)
slice_indexer(self, start: 'Hashable | None' = None, end: 'Hashable | None' = None, step: 'int | None' = None) -> 'slice'
slice_locs(self, start=None, end=None, step=None) -> 'tuple[int, int]'
sort(self, *args, **kwargs)
sort_values(self, *, return_indexer: 'bool' = False, ascending: 'bool' = True, na_position: 'NaPosition' = 'last', key: 'Callable | None' = None) -> 'Self | tuple[Self, np.ndarray]'
sortlevel(self, level=None, ascending: 'bool | list[bool]' = True, sort_remaining=None, na_position: 'NaPosition' = 'first')
symmetric_difference(self, other, result_name=None, sort=None)
take(self, indices, axis: 'Axis' = 0, allow_fill: 'bool' = True, fill_value=None, **kwargs) -> 'Self'
to_flat_index(self) -> 'Self'
to_frame(self, index: 'bool' = True, name: 'Hashable' = <no_default>) -> 'DataFrame'
to_series(self, index=None, name: 'Hashable | None' = None) -> 'Series'
union(self, other, sort=None)
unique(self, level: 'Hashable | None' = None) -> 'Self'
view(self, cls=None)
where(self, cond, other=None) -> 'Index'

Méthodes héritées de la classe PandasObject

__init_subclass__, __sizeof__, __subclasshook__

Méthodes héritées de la classe DirNamesMixin

__dir__

Méthodes héritées de la classe IndexOpsMixin

__iter__, factorize, item, nunique, searchsorted, to_list, to_numpy, tolist, transpose, value_counts

Méthodes héritées de la classe OpsMixin

__divmod__, __rdivmod__

Méthodes héritées de la classe object

__delattr__, __format__, __getattribute__, __getstate__, __hash__, __reduce_ex__, __setattr__, __str__

Vous êtes un professionnel et vous avez besoin d'une formation ? Coder avec une
Intelligence Artificielle
Voir le programme détaillé