Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Classe « Index »

Méthode pandas.Index.isna

Signature de la méthode isna

def isna(self) 

Description

isna.__doc__

        Detect missing values.

        Return a boolean same-sized object indicating if the values are NA.
        NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get
        mapped to ``True`` values.
        Everything else get mapped to ``False`` values. Characters such as
        empty strings `''` or :attr:`numpy.inf` are not considered NA values
        (unless you set ``pandas.options.mode.use_inf_as_na = True``).

        Returns
        -------
        numpy.ndarray
            A boolean array of whether my values are NA.

        See Also
        --------
        Index.notna : Boolean inverse of isna.
        Index.dropna : Omit entries with missing values.
        isna : Top-level isna.
        Series.isna : Detect missing values in Series object.

        Examples
        --------
        Show which entries in a pandas.Index are NA. The result is an
        array.

        >>> idx = pd.Index([5.2, 6.0, np.NaN])
        >>> idx
        Float64Index([5.2, 6.0, nan], dtype='float64')
        >>> idx.isna()
        array([False, False,  True])

        Empty strings are not considered NA values. None is considered an NA
        value.

        >>> idx = pd.Index(['black', '', 'red', None])
        >>> idx
        Index(['black', '', 'red', None], dtype='object')
        >>> idx.isna()
        array([False, False, False,  True])

        For datetimes, `NaT` (Not a Time) is considered as an NA value.

        >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'),
        ...                         pd.Timestamp(''), None, pd.NaT])
        >>> idx
        DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'],
                      dtype='datetime64[ns]', freq=None)
        >>> idx.isna()
        array([False,  True,  True,  True])