Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « pandas »

Fonction unique - module pandas

Signature de la fonction unique

def unique(values) 

Description

unique.__doc__

    Hash table-based unique. Uniques are returned in order
    of appearance. This does NOT sort.

    Significantly faster than numpy.unique. Includes NA values.

    Parameters
    ----------
    values : 1d array-like

    Returns
    -------
    numpy.ndarray or ExtensionArray

        The return can be:

        * Index : when the input is an Index
        * Categorical : when the input is a Categorical dtype
        * ndarray : when the input is a Series/ndarray

        Return numpy.ndarray or ExtensionArray.

    See Also
    --------
    Index.unique : Return unique values from an Index.
    Series.unique : Return unique values of Series object.

    Examples
    --------
    >>> pd.unique(pd.Series([2, 1, 3, 3]))
    array([2, 1, 3])

    >>> pd.unique(pd.Series([2] + [1] * 5))
    array([2, 1])

    >>> pd.unique(pd.Series([pd.Timestamp('20160101'),
    ...                     pd.Timestamp('20160101')]))
    array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')

    >>> pd.unique(pd.Series([pd.Timestamp('20160101', tz='US/Eastern'),
    ...                      pd.Timestamp('20160101', tz='US/Eastern')]))
    array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')],
          dtype=object)

    >>> pd.unique(pd.Index([pd.Timestamp('20160101', tz='US/Eastern'),
    ...                     pd.Timestamp('20160101', tz='US/Eastern')]))
    DatetimeIndex(['2016-01-01 00:00:00-05:00'],
    ...           dtype='datetime64[ns, US/Eastern]', freq=None)

    >>> pd.unique(list('baabc'))
    array(['b', 'a', 'c'], dtype=object)

    An unordered Categorical will return categories in the
    order of appearance.

    >>> pd.unique(pd.Series(pd.Categorical(list('baabc'))))
    [b, a, c]
    Categories (3, object): [b, a, c]

    >>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
    ...                                    categories=list('abc'))))
    [b, a, c]
    Categories (3, object): [b, a, c]

    An ordered Categorical preserves the category ordering.

    >>> pd.unique(pd.Series(pd.Categorical(list('baabc'),
    ...                                    categories=list('abc'),
    ...                                    ordered=True)))
    [b, a, c]
    Categories (3, object): [a < b < c]

    An array of tuples

    >>> pd.unique([('a', 'b'), ('b', 'a'), ('a', 'c'), ('b', 'a')])
    array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)