Participer au site avec un Tip
Rechercher
 

Améliorations / Corrections

Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.

Emplacement :

Description des améliorations :

Module « pandas »

Classe « Grouper »

Informations générales

Héritage

builtins.object
    Grouper

Définition

class Grouper(builtins.object):

Description [extrait de Grouper.__doc__]

    A Grouper allows the user to specify a groupby instruction for an object.

    This specification will select a column via the key parameter, or if the
    level and/or axis parameters are given, a level of the index of the target
    object.

    If `axis` and/or `level` are passed as keywords to both `Grouper` and
    `groupby`, the values passed to `Grouper` take precedence.

    Parameters
    ----------
    key : str, defaults to None
        Groupby key, which selects the grouping column of the target.
    level : name/number, defaults to None
        The level for the target index.
    freq : str / frequency object, defaults to None
        This will groupby the specified frequency if the target selection
        (via key or level) is a datetime-like object. For full specification
        of available frequencies, please see `here
        <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
    axis : str, int, defaults to 0
        Number/name of the axis.
    sort : bool, default to False
        Whether to sort the resulting labels.
    closed : {'left' or 'right'}
        Closed end of interval. Only when `freq` parameter is passed.
    label : {'left' or 'right'}
        Interval boundary to use for labeling.
        Only when `freq` parameter is passed.
    convention : {'start', 'end', 'e', 's'}
        If grouper is PeriodIndex and `freq` parameter is passed.
    base : int, default 0
        Only when `freq` parameter is passed.
        For frequencies that evenly subdivide 1 day, the "origin" of the
        aggregated intervals. For example, for '5min' frequency, base could
        range from 0 through 4. Defaults to 0.

        .. deprecated:: 1.1.0
            The new arguments that you should use are 'offset' or 'origin'.

    loffset : str, DateOffset, timedelta object
        Only when `freq` parameter is passed.

        .. deprecated:: 1.1.0
            loffset is only working for ``.resample(...)`` and not for
            Grouper (:issue:`28302`).
            However, loffset is also deprecated for ``.resample(...)``
            See: :class:`DataFrame.resample`

    origin : {'epoch', 'start', 'start_day'}, Timestamp or str, default 'start_day'
        The timestamp on which to adjust the grouping. The timezone of origin must
        match the timezone of the index.
        If a timestamp is not used, these values are also supported:

        - 'epoch': `origin` is 1970-01-01
        - 'start': `origin` is the first value of the timeseries
        - 'start_day': `origin` is the first day at midnight of the timeseries

        .. versionadded:: 1.1.0

    offset : Timedelta or str, default is None
        An offset timedelta added to the origin.

        .. versionadded:: 1.1.0

    dropna : bool, default True
        If True, and if group keys contain NA values, NA values together with
        row/column will be dropped. If False, NA values will also be treated as
        the key in groups.

        .. versionadded:: 1.2.0

    Returns
    -------
    A specification for a groupby instruction

    Examples
    --------
    Syntactic sugar for ``df.groupby('A')``

    >>> df = pd.DataFrame(
    ...     {
    ...         "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"],
    ...         "Speed": [100, 5, 200, 300, 15],
    ...     }
    ... )
    >>> df
       Animal  Speed
    0  Falcon    100
    1  Parrot      5
    2  Falcon    200
    3  Falcon    300
    4  Parrot     15
    >>> df.groupby(pd.Grouper(key="Animal")).mean()
            Speed
    Animal
    Falcon    200
    Parrot     10

    Specify a resample operation on the column 'Publish date'

    >>> df = pd.DataFrame(
    ...    {
    ...        "Publish date": [
    ...             pd.Timestamp("2000-01-02"),
    ...             pd.Timestamp("2000-01-02"),
    ...             pd.Timestamp("2000-01-09"),
    ...             pd.Timestamp("2000-01-16")
    ...         ],
    ...         "ID": [0, 1, 2, 3],
    ...         "Price": [10, 20, 30, 40]
    ...     }
    ... )
    >>> df
      Publish date  ID  Price
    0   2000-01-02   0     10
    1   2000-01-02   1     20
    2   2000-01-09   2     30
    3   2000-01-16   3     40
    >>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean()
                   ID  Price
    Publish date
    2000-01-02    0.5   15.0
    2000-01-09    2.0   30.0
    2000-01-16    3.0   40.0

    If you want to adjust the start of the bins based on a fixed timestamp:

    >>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
    >>> rng = pd.date_range(start, end, freq='7min')
    >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
    >>> ts
    2000-10-01 23:30:00     0
    2000-10-01 23:37:00     3
    2000-10-01 23:44:00     6
    2000-10-01 23:51:00     9
    2000-10-01 23:58:00    12
    2000-10-02 00:05:00    15
    2000-10-02 00:12:00    18
    2000-10-02 00:19:00    21
    2000-10-02 00:26:00    24
    Freq: 7T, dtype: int64

    >>> ts.groupby(pd.Grouper(freq='17min')).sum()
    2000-10-01 23:14:00     0
    2000-10-01 23:31:00     9
    2000-10-01 23:48:00    21
    2000-10-02 00:05:00    54
    2000-10-02 00:22:00    24
    Freq: 17T, dtype: int64

    >>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum()
    2000-10-01 23:18:00     0
    2000-10-01 23:35:00    18
    2000-10-01 23:52:00    27
    2000-10-02 00:09:00    39
    2000-10-02 00:26:00    24
    Freq: 17T, dtype: int64

    >>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum()
    2000-10-01 23:24:00     3
    2000-10-01 23:41:00    15
    2000-10-01 23:58:00    45
    2000-10-02 00:15:00    45
    Freq: 17T, dtype: int64

    If you want to adjust the start of the bins with an `offset` Timedelta, the two
    following lines are equivalent:

    >>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum()
    2000-10-01 23:30:00     9
    2000-10-01 23:47:00    21
    2000-10-02 00:04:00    54
    2000-10-02 00:21:00    24
    Freq: 17T, dtype: int64

    >>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum()
    2000-10-01 23:30:00     9
    2000-10-01 23:47:00    21
    2000-10-02 00:04:00    54
    2000-10-02 00:21:00    24
    Freq: 17T, dtype: int64

    To replace the use of the deprecated `base` argument, you can now use `offset`,
    in this example it is equivalent to have `base=2`:

    >>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum()
    2000-10-01 23:16:00     0
    2000-10-01 23:33:00     9
    2000-10-01 23:50:00    36
    2000-10-02 00:07:00    39
    2000-10-02 00:24:00    24
    Freq: 17T, dtype: int64
    

Constructeur(s)

Signature du constructeur Description
__new__(cls, *args, **kwargs)
__init__(self, key=None, level=None, freq=None, axis=0, sort=False, dropna=True)

Liste des propriétés

Nom de la propriétéDescription
ax
groups

Liste des opérateurs

Opérateurs hérités de la classe object

__eq__, __ge__, __gt__, __le__, __lt__, __ne__

Liste des méthodes

Toutes les méthodes Méthodes d'instance Méthodes statiques Méthodes dépréciées
Signature de la méthodeDescription
__repr__(self) -> str

Méthodes héritées de la classe object

__delattr__, __dir__, __format__, __getattribute__, __hash__, __init_subclass__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __str__, __subclasshook__