Vous êtes un professionnel et vous avez besoin d'une formation ?
Machine Learning
avec Scikit-Learn
Voir le programme détaillé
Module « pandas »
Signature de la fonction json_normalize
def json_normalize(data: 'dict | list[dict]', record_path: 'str | list | None' = None, meta: 'str | list[str | list[str]] | None' = None, meta_prefix: 'str | None' = None, record_prefix: 'str | None' = None, errors: 'IgnoreRaise' = 'raise', sep: 'str' = '.', max_level: 'int | None' = None) -> 'DataFrame'
Description
help(pandas.json_normalize)
Normalize semi-structured JSON data into a flat table.
Parameters
----------
data : dict or list of dicts
Unserialized JSON objects.
record_path : str or list of str, default None
Path in each object to list of records. If not passed, data will be
assumed to be an array of records.
meta : list of paths (str or list of str), default None
Fields to use as metadata for each record in resulting table.
meta_prefix : str, default None
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
meta is ['foo', 'bar'].
record_prefix : str, default None
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
path to records is ['foo', 'bar'].
errors : {'raise', 'ignore'}, default 'raise'
Configures error handling.
* 'ignore' : will ignore KeyError if keys listed in meta are not
always present.
* 'raise' : will raise KeyError if keys listed in meta are not
always present.
sep : str, default '.'
Nested records will generate names separated by sep.
e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
max_level : int, default None
Max number of levels(depth of dict) to normalize.
if None, normalizes all levels.
Returns
-------
frame : DataFrame
Normalize semi-structured JSON data into a flat table.
Examples
--------
>>> data = [
... {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
... {"name": {"given": "Mark", "family": "Regner"}},
... {"id": 2, "name": "Faye Raker"},
... ]
>>> pd.json_normalize(data)
id name.first name.last name.given name.family name
0 1.0 Coleen Volk NaN NaN NaN
1 NaN NaN NaN Mark Regner NaN
2 2.0 NaN NaN NaN NaN Faye Raker
>>> data = [
... {
... "id": 1,
... "name": "Cole Volk",
... "fitness": {"height": 130, "weight": 60},
... },
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
... {
... "id": 2,
... "name": "Faye Raker",
... "fitness": {"height": 130, "weight": 60},
... },
... ]
>>> pd.json_normalize(data, max_level=0)
id name fitness
0 1.0 Cole Volk {'height': 130, 'weight': 60}
1 NaN Mark Reg {'height': 130, 'weight': 60}
2 2.0 Faye Raker {'height': 130, 'weight': 60}
Normalizes nested data up to level 1.
>>> data = [
... {
... "id": 1,
... "name": "Cole Volk",
... "fitness": {"height": 130, "weight": 60},
... },
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
... {
... "id": 2,
... "name": "Faye Raker",
... "fitness": {"height": 130, "weight": 60},
... },
... ]
>>> pd.json_normalize(data, max_level=1)
id name fitness.height fitness.weight
0 1.0 Cole Volk 130 60
1 NaN Mark Reg 130 60
2 2.0 Faye Raker 130 60
>>> data = [
... {
... "state": "Florida",
... "shortname": "FL",
... "info": {"governor": "Rick Scott"},
... "counties": [
... {"name": "Dade", "population": 12345},
... {"name": "Broward", "population": 40000},
... {"name": "Palm Beach", "population": 60000},
... ],
... },
... {
... "state": "Ohio",
... "shortname": "OH",
... "info": {"governor": "John Kasich"},
... "counties": [
... {"name": "Summit", "population": 1234},
... {"name": "Cuyahoga", "population": 1337},
... ],
... },
... ]
>>> result = pd.json_normalize(
... data, "counties", ["state", "shortname", ["info", "governor"]]
... )
>>> result
name population state shortname info.governor
0 Dade 12345 Florida FL Rick Scott
1 Broward 40000 Florida FL Rick Scott
2 Palm Beach 60000 Florida FL Rick Scott
3 Summit 1234 Ohio OH John Kasich
4 Cuyahoga 1337 Ohio OH John Kasich
>>> data = {"A": [1, 2]}
>>> pd.json_normalize(data, "A", record_prefix="Prefix.")
Prefix.0
0 1
1 2
Returns normalized data with columns prefixed with the given string.
Vous êtes un professionnel et vous avez besoin d'une formation ?
Coder avec une
Intelligence Artificielle
Voir le programme détaillé
Améliorations / Corrections
Vous avez des améliorations (ou des corrections) à proposer pour ce document : je vous remerçie par avance de m'en faire part, cela m'aide à améliorer le site.
Emplacement :
Description des améliorations :